mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
ultralytics 8.0.200
move on_val_start
callback for training (#5790)
Co-authored-by: Myyura <zz940521@gmail.com>
This commit is contained in:
parent
437b4306d2
commit
b9b0fd8bf4
2
.github/workflows/ci.yaml
vendored
2
.github/workflows/ci.yaml
vendored
@ -247,7 +247,7 @@ jobs:
|
||||
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
|
||||
|
||||
Conda:
|
||||
if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event.inputs.conda == 'true')
|
||||
if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule_disabled' || github.event.inputs.conda == 'true')
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
|
@ -175,10 +175,18 @@ char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std
|
||||
std::vector<int> class_ids;
|
||||
std::vector<float> confidences;
|
||||
std::vector<cv::Rect> boxes;
|
||||
cv::Mat rowData(signalResultNum, strideNum, CV_32F, output);
|
||||
rowData = rowData.t();
|
||||
|
||||
float *data = (float *) rowData.data;
|
||||
cv::Mat rawData;
|
||||
if (modelType == 1) {
|
||||
// FP32
|
||||
rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
|
||||
} else {
|
||||
// FP16
|
||||
rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
|
||||
rawData.convertTo(rawData, CV_32F);
|
||||
}
|
||||
rawData = rawData.t();
|
||||
float *data = (float *) rawData.data;
|
||||
|
||||
float x_factor = iImg.cols / 640.;
|
||||
float y_factor = iImg.rows / 640.;
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = '8.0.199'
|
||||
__version__ = '8.0.200'
|
||||
|
||||
from ultralytics.models import RTDETR, SAM, YOLO
|
||||
from ultralytics.models.fastsam import FastSAM
|
||||
|
@ -119,7 +119,6 @@ class BaseValidator:
|
||||
model.eval()
|
||||
else:
|
||||
callbacks.add_integration_callbacks(self)
|
||||
self.run_callbacks('on_val_start')
|
||||
model = AutoBackend(model or self.args.model,
|
||||
device=select_device(self.args.device, self.args.batch),
|
||||
dnn=self.args.dnn,
|
||||
@ -152,6 +151,7 @@ class BaseValidator:
|
||||
model.eval()
|
||||
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup
|
||||
|
||||
self.run_callbacks('on_val_start')
|
||||
dt = Profile(), Profile(), Profile(), Profile()
|
||||
bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader))
|
||||
self.init_metrics(de_parallel(model))
|
||||
|
Loading…
x
Reference in New Issue
Block a user