mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
Add integrations/gradio
Docs page (#7935)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: WangQvQ <1579093407@qq.com> Co-authored-by: Martin Pl <martin-plank@gmx.de> Co-authored-by: Mactarvish <Mactarvish@users.noreply.github.com>
This commit is contained in:
parent
2881cda483
commit
ba484929e3
@ -119,7 +119,7 @@ To train a model on the DOTA v1 dataset, you can utilize the following code snip
|
||||
|
||||
```bash
|
||||
# Train a new YOLOv8n-OBB model on the DOTAv2 dataset
|
||||
yolo detect train data=DOTAv1.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Sample Data and Annotations
|
||||
|
104
docs/en/integrations/gradio.md
Normal file
104
docs/en/integrations/gradio.md
Normal file
@ -0,0 +1,104 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn to use Gradio and Ultralytics YOLOv8 for interactive object detection. Upload images and adjust detection parameters in real-time.
|
||||
keywords: Gradio, Ultralytics YOLOv8, object detection, interactive AI, Python
|
||||
---
|
||||
|
||||
# Interactive Object Detection: Gradio & Ultralytics YOLOv8 🚀
|
||||
|
||||
## Introduction to Interactive Object Detection
|
||||
|
||||
This Gradio interface provides an easy and interactive way to perform object detection using the [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) model. Users can upload images and adjust parameters like confidence threshold and intersection-over-union (IoU) threshold to get real-time detection results.
|
||||
|
||||
## Why Use Gradio for Object Detection?
|
||||
|
||||
* **User-Friendly Interface:** Gradio offers a straightforward platform for users to upload images and visualize detection results without any coding requirement.
|
||||
* **Real-Time Adjustments:** Parameters such as confidence and IoU thresholds can be adjusted on the fly, allowing for immediate feedback and optimization of detection results.
|
||||
* **Broad Accessibility:** The Gradio web interface can be accessed by anyone, making it an excellent tool for demonstrations, educational purposes, and quick experiments.
|
||||
|
||||
<img width="800" alt="Gradio example screenshot" src="https://github.com/WangQvQ/ultralytics/assets/58406737/5d906f10-fd62-4bcc-8856-ef3233102c1d">
|
||||
|
||||
## How to Install the Gradio
|
||||
|
||||
```bash
|
||||
pip install gradio
|
||||
```
|
||||
|
||||
## How to Use the Interface
|
||||
|
||||
1. **Upload Image:** Click on 'Upload Image' to choose an image file for object detection.
|
||||
2. **Adjust Parameters:**
|
||||
* **Confidence Threshold:** Slider to set the minimum confidence level for detecting objects.
|
||||
* **IoU Threshold:** Slider to set the IoU threshold for distinguishing different objects.
|
||||
3. **View Results:** The processed image with detected objects and their labels will be displayed.
|
||||
|
||||
## Example Use Cases
|
||||
|
||||
* **Sample Image 1:** Bus detection with default thresholds.
|
||||
* **Sample Image 2:** Detection on a sports image with default thresholds.
|
||||
|
||||
## Usage Example
|
||||
|
||||
This section provides the Python code used to create the Gradio interface with the Ultralytics YOLOv8 model. Supports classification tasks, detection tasks, segmentation tasks, and key point tasks.
|
||||
|
||||
```python
|
||||
import PIL.Image as Image
|
||||
import gradio as gr
|
||||
|
||||
from ultralytics import ASSETS, YOLO
|
||||
|
||||
model = YOLO("yolov8n.pt")
|
||||
|
||||
|
||||
def predict_image(img, conf_threshold, iou_threshold):
|
||||
results = model.predict(
|
||||
source=img,
|
||||
conf=conf_threshold,
|
||||
iou=iou_threshold,
|
||||
show_labels=True,
|
||||
show_conf=True,
|
||||
imgsz=640,
|
||||
)
|
||||
|
||||
for r in results:
|
||||
im_array = r.plot()
|
||||
im = Image.fromarray(im_array[..., ::-1])
|
||||
|
||||
return im
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
fn=predict_image,
|
||||
inputs=[
|
||||
gr.Image(type="pil", label="Upload Image"),
|
||||
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
||||
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
|
||||
],
|
||||
outputs=gr.Image(type="pil", label="Result"),
|
||||
title="Ultralytics Gradio",
|
||||
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.",
|
||||
examples=[
|
||||
[ASSETS / "bus.jpg", 0.25, 0.45],
|
||||
[ASSETS / "zidane.jpg", 0.25, 0.45],
|
||||
]
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
iface.launch()
|
||||
```
|
||||
|
||||
## Parameters Explanation
|
||||
|
||||
| Parameter Name | Type | Description |
|
||||
|------------------|---------|----------------------------------------------------------|
|
||||
| `img` | `Image` | The image on which object detection will be performed. |
|
||||
| `conf_threshold` | `float` | Confidence threshold for detecting objects. |
|
||||
| `iou_threshold` | `float` | Intersection-over-union threshold for object separation. |
|
||||
|
||||
### Gradio Interface Components
|
||||
|
||||
| Component | Description |
|
||||
|--------------|------------------------------------------|
|
||||
| Image Input | To upload the image for detection. |
|
||||
| Sliders | To adjust confidence and IoU thresholds. |
|
||||
| Image Output | To display the detection results. |
|
@ -40,6 +40,8 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
|
||||
|
||||
- [Neural Magic](neural-magic.md): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
|
||||
|
||||
- [Gradio](../integrations/gradio.md) 🚀 NEW: Deploy Ultralytics models with Gradio for real-time, interactive object detection demos.
|
||||
|
||||
- [OpenVINO](openvino.md): Intel's toolkit for optimizing and deploying computer vision models efficiently across various Intel CPU and GPU platforms.
|
||||
|
||||
- [ONNX](onnx.md): An open-source format created by [Microsoft](https://www.microsoft.com) for facilitating the transfer of AI models between various frameworks, enhancing the versatility and deployment flexibility of Ultralytics models.
|
||||
|
@ -345,6 +345,7 @@ nav:
|
||||
- DVC: integrations/dvc.md
|
||||
- Weights & Biases: integrations/weights-biases.md
|
||||
- Neural Magic: integrations/neural-magic.md
|
||||
- Gradio: integrations/gradio.md
|
||||
- TensorBoard: integrations/tensorboard.md
|
||||
- Amazon SageMaker: integrations/amazon-sagemaker.md
|
||||
- HUB:
|
||||
|
@ -701,7 +701,7 @@ class Metric(SimpleClass):
|
||||
Returns the mean Average Precision (mAP) at an IoU threshold of 0.5.
|
||||
|
||||
Returns:
|
||||
(float): The mAP50 at an IoU threshold of 0.5.
|
||||
(float): The mAP at an IoU threshold of 0.5.
|
||||
"""
|
||||
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
||||
|
||||
@ -711,7 +711,7 @@ class Metric(SimpleClass):
|
||||
Returns the mean Average Precision (mAP) at an IoU threshold of 0.75.
|
||||
|
||||
Returns:
|
||||
(float): The mAP50 at an IoU threshold of 0.75.
|
||||
(float): The mAP at an IoU threshold of 0.75.
|
||||
"""
|
||||
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user