mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
ultralytics 8.0.69
HUB CI and ClearML fixes (#1888)
Co-authored-by: Victor Sonck <victor.sonck@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
d3f097314f
commit
c2cd3fd20e
13
.github/workflows/ci.yaml
vendored
13
.github/workflows/ci.yaml
vendored
@ -46,17 +46,14 @@ jobs:
|
||||
- name: Test HUB training
|
||||
shell: python
|
||||
env:
|
||||
APIKEY: ${{ secrets.ULTRALYTICS_HUB_APIKEY }}
|
||||
API_KEY: ${{ secrets.ULTRALYTICS_HUB_API_KEY }}
|
||||
MODEL_ID: ${{ secrets.ULTRALYTICS_HUB_MODEL_ID }}
|
||||
run: |
|
||||
import os
|
||||
from pathlib import Path
|
||||
from ultralytics import YOLO, hub
|
||||
from ultralytics.yolo.utils import USER_CONFIG_DIR
|
||||
Path(USER_CONFIG_DIR / 'settings.yaml').unlink()
|
||||
key = os.environ['APIKEY']
|
||||
hub.reset_model(key)
|
||||
key, model_id = key.split('_')
|
||||
hub.login(key)
|
||||
api_key, model_id = os.environ['API_KEY'], os.environ['MODEL_ID']
|
||||
hub.login(api_key)
|
||||
hub.reset_model(model_id)
|
||||
model = YOLO('https://hub.ultralytics.com/models/' + model_id)
|
||||
model.train()
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = '8.0.68'
|
||||
__version__ = '8.0.69'
|
||||
|
||||
from ultralytics.hub import start
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
|
@ -2,7 +2,8 @@
|
||||
|
||||
import requests
|
||||
|
||||
from ultralytics.hub.utils import PREFIX, split_key
|
||||
from ultralytics.hub.auth import Auth
|
||||
from ultralytics.hub.utils import PREFIX
|
||||
from ultralytics.yolo.utils import LOGGER, SETTINGS, USER_CONFIG_DIR, yaml_save
|
||||
|
||||
|
||||
@ -17,7 +18,6 @@ def login(api_key=''):
|
||||
from ultralytics import hub
|
||||
hub.login('API_KEY')
|
||||
"""
|
||||
from ultralytics.hub.auth import Auth
|
||||
Auth(api_key)
|
||||
|
||||
|
||||
@ -42,20 +42,20 @@ def start(key=''):
|
||||
key (str, optional): A string containing either the API key and model ID combination (apikey_modelid),
|
||||
or the full model URL (https://hub.ultralytics.com/models/apikey_modelid).
|
||||
"""
|
||||
api_key, model_id = key.split('_')
|
||||
LOGGER.warning(f"""
|
||||
WARNING ⚠️ ultralytics.start() is deprecated in 8.0.60. Updated usage to train your Ultralytics HUB model is below:
|
||||
WARNING ⚠️ ultralytics.start() is deprecated after 8.0.60. Updated usage to train Ultralytics HUB models is:
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics import YOLO, hub
|
||||
|
||||
model = YOLO('https://hub.ultralytics.com/models/{key}')
|
||||
hub.login('{api_key}')
|
||||
model = YOLO('https://hub.ultralytics.com/models/{model_id}')
|
||||
model.train()""")
|
||||
|
||||
|
||||
def reset_model(key=''):
|
||||
def reset_model(model_id=''):
|
||||
# Reset a trained model to an untrained state
|
||||
api_key, model_id = split_key(key)
|
||||
r = requests.post('https://api.ultralytics.com/model-reset', json={'apiKey': api_key, 'modelId': model_id})
|
||||
|
||||
r = requests.post('https://api.ultralytics.com/model-reset', json={'apiKey': Auth().api_key, 'modelId': model_id})
|
||||
if r.status_code == 200:
|
||||
LOGGER.info(f'{PREFIX}Model reset successfully')
|
||||
return
|
||||
@ -68,26 +68,24 @@ def export_fmts_hub():
|
||||
return list(export_formats()['Argument'][1:]) + ['ultralytics_tflite', 'ultralytics_coreml']
|
||||
|
||||
|
||||
def export_model(key='', format='torchscript'):
|
||||
def export_model(model_id='', format='torchscript'):
|
||||
# Export a model to all formats
|
||||
assert format in export_fmts_hub(), f"Unsupported export format '{format}', valid formats are {export_fmts_hub()}"
|
||||
api_key, model_id = split_key(key)
|
||||
r = requests.post('https://api.ultralytics.com/export',
|
||||
json={
|
||||
'apiKey': api_key,
|
||||
'apiKey': Auth().api_key,
|
||||
'modelId': model_id,
|
||||
'format': format})
|
||||
assert r.status_code == 200, f'{PREFIX}{format} export failure {r.status_code} {r.reason}'
|
||||
LOGGER.info(f'{PREFIX}{format} export started ✅')
|
||||
|
||||
|
||||
def get_export(key='', format='torchscript'):
|
||||
def get_export(model_id='', format='torchscript'):
|
||||
# Get an exported model dictionary with download URL
|
||||
assert format in export_fmts_hub, f"Unsupported export format '{format}', valid formats are {export_fmts_hub}"
|
||||
api_key, model_id = split_key(key)
|
||||
r = requests.post('https://api.ultralytics.com/get-export',
|
||||
json={
|
||||
'apiKey': api_key,
|
||||
'apiKey': Auth().api_key,
|
||||
'modelId': model_id,
|
||||
'format': format})
|
||||
assert r.status_code == 200, f'{PREFIX}{format} get_export failure {r.status_code} {r.reason}'
|
||||
|
@ -13,7 +13,7 @@ import requests
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.yolo.utils import (ENVIRONMENT, LOGGER, ONLINE, RANK, SETTINGS, TESTS_RUNNING, TQDM_BAR_FORMAT,
|
||||
TryExcept, __version__, colorstr, emojis, get_git_origin_url, is_colab, is_git_dir,
|
||||
TryExcept, __version__, colorstr, get_git_origin_url, is_colab, is_git_dir,
|
||||
is_pip_package)
|
||||
|
||||
PREFIX = colorstr('Ultralytics HUB: ')
|
||||
@ -80,29 +80,6 @@ def request_with_credentials(url: str) -> any:
|
||||
return output.eval_js('_hub_tmp')
|
||||
|
||||
|
||||
def split_key(key=''):
|
||||
"""
|
||||
Verify and split a 'api_key[sep]model_id' string, sep is one of '.' or '_'
|
||||
|
||||
Args:
|
||||
key (str): The model key to split. If not provided, the user will be prompted to enter it.
|
||||
|
||||
Returns:
|
||||
Tuple[str, str]: A tuple containing the API key and model ID.
|
||||
"""
|
||||
|
||||
import getpass
|
||||
|
||||
error_string = emojis(f'{PREFIX}Invalid API key ⚠️\n') # error string
|
||||
if not key:
|
||||
key = getpass.getpass('Enter model key: ')
|
||||
sep = '_' if '_' in key else None # separator
|
||||
assert sep, error_string
|
||||
api_key, model_id = key.split(sep)
|
||||
assert len(api_key) and len(model_id), error_string
|
||||
return api_key, model_id
|
||||
|
||||
|
||||
def requests_with_progress(method, url, **kwargs):
|
||||
"""
|
||||
Make an HTTP request using the specified method and URL, with an optional progress bar.
|
||||
|
@ -27,11 +27,13 @@ def _log_debug_samples(files, title='Debug Samples'):
|
||||
files (List(PosixPath)) a list of file paths in PosixPath format
|
||||
title (str) A title that groups together images with the same values
|
||||
"""
|
||||
task = Task.current_task()
|
||||
if task:
|
||||
for f in files:
|
||||
if f.exists():
|
||||
it = re.search(r'_batch(\d+)', f.name)
|
||||
iteration = int(it.groups()[0]) if it else 0
|
||||
Task.current_task().get_logger().report_image(title=title,
|
||||
task.get_logger().report_image(title=title,
|
||||
series=f.name.replace(it.group(), ''),
|
||||
local_path=str(f),
|
||||
iteration=iteration)
|
||||
@ -54,11 +56,9 @@ def _log_plot(title, plot_path):
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
# TODO: reuse existing task
|
||||
try:
|
||||
if Task.current_task():
|
||||
task = Task.current_task()
|
||||
|
||||
if task:
|
||||
# Make sure the automatic pytorch and matplotlib bindings are disabled!
|
||||
# We are logging these plots and model files manually in the integration
|
||||
PatchPyTorchModelIO.update_current_task(None)
|
||||
@ -80,13 +80,15 @@ def on_pretrain_routine_start(trainer):
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
if trainer.epoch == 1:
|
||||
if trainer.epoch == 1 and Task.current_task():
|
||||
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic')
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
task = Task.current_task()
|
||||
if task:
|
||||
# You should have access to the validation bboxes under jdict
|
||||
Task.current_task().get_logger().report_scalar(title='Epoch Time',
|
||||
task.get_logger().report_scalar(title='Epoch Time',
|
||||
series='Epoch Time',
|
||||
value=trainer.epoch_time,
|
||||
iteration=trainer.epoch)
|
||||
@ -96,15 +98,18 @@ def on_fit_epoch_end(trainer):
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed['inference'], 3)}
|
||||
for k, v in model_info.items():
|
||||
Task.current_task().get_logger().report_single_value(k, v)
|
||||
task.get_logger().report_single_value(k, v)
|
||||
|
||||
|
||||
def on_val_end(validator):
|
||||
if Task.current_task():
|
||||
# Log val_labels and val_pred
|
||||
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation')
|
||||
|
||||
|
||||
def on_train_end(trainer):
|
||||
task = Task.current_task()
|
||||
if task:
|
||||
# Log final results, CM matrix + PR plots
|
||||
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
||||
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
|
||||
@ -112,11 +117,9 @@ def on_train_end(trainer):
|
||||
_log_plot(title=f.stem, plot_path=f)
|
||||
# Report final metrics
|
||||
for k, v in trainer.validator.metrics.results_dict.items():
|
||||
Task.current_task().get_logger().report_single_value(k, v)
|
||||
task.get_logger().report_single_value(k, v)
|
||||
# Log the final model
|
||||
Task.current_task().update_output_model(model_path=str(trainer.best),
|
||||
model_name=trainer.args.name,
|
||||
auto_delete_file=False)
|
||||
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
|
||||
|
||||
|
||||
callbacks = {
|
||||
|
@ -337,6 +337,10 @@ def git_describe(path=ROOT): # path must be a directory
|
||||
|
||||
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
||||
# Print function arguments (optional args dict)
|
||||
def strip_auth(v):
|
||||
# Clean longer Ultralytics HUB URLs by stripping potential authentication information
|
||||
return clean_url(v) if (isinstance(v, str) and v.startswith('http') and len(v) > 100) else v
|
||||
|
||||
x = inspect.currentframe().f_back # previous frame
|
||||
file, _, func, _, _ = inspect.getframeinfo(x)
|
||||
if args is None: # get args automatically
|
||||
@ -347,4 +351,4 @@ def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
||||
except ValueError:
|
||||
file = Path(file).stem
|
||||
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
|
||||
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
||||
LOGGER.info(colorstr(s) + ', '.join(f'{k}={strip_auth(v)}' for k, v in args.items()))
|
||||
|
Loading…
x
Reference in New Issue
Block a user