mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
ultralytics 8.0.117
NAS export, classify and tasks banner URL fixes (#3145)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
b59342b81c
commit
c340f84ce9
@ -102,9 +102,9 @@ path = model.export(format="onnx") # export the model to ONNX format
|
||||
|
||||
## <div align="center">Models</div>
|
||||
|
||||
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/modes/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
||||
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
|
||||
|
||||
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/tasks/im/banner-tasks.png">
|
||||
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png">
|
||||
|
||||
All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
|
@ -102,9 +102,9 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
||||
|
||||
## <div align="center">模型</div>
|
||||
|
||||
在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect),[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/modes/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。
|
||||
在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect),[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。
|
||||
|
||||
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/tasks/im/banner-tasks.png">
|
||||
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png">
|
||||
|
||||
所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models)在首次使用时会自动从最新的Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)下载。
|
||||
|
||||
|
@ -10,7 +10,7 @@ perform [detection](detect.md), [segmentation](segment.md), [classification](cla
|
||||
and [pose](pose.md) estimation. Each of these tasks has a different objective and use case.
|
||||
|
||||
<br>
|
||||
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/tasks/im/banner-tasks.png">
|
||||
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png">
|
||||
|
||||
## [Detection](detect.md)
|
||||
|
||||
|
@ -548,7 +548,7 @@
|
||||
"\n",
|
||||
"YOLOv8 can train, val, predict and export models for the most common tasks in vision AI: [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/). See [YOLOv8 Tasks Docs](https://docs.ultralytics.com/tasks/) for more information.\n",
|
||||
"\n",
|
||||
"<br><img width=\"1024\" src=\"https://raw.githubusercontent.com/ultralytics/assets/tasks/im/banner-tasks.png\">\n"
|
||||
"<br><img width=\"1024\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png\">\n"
|
||||
],
|
||||
"metadata": {
|
||||
"id": "Phm9ccmOKye5"
|
||||
|
@ -17,7 +17,7 @@ theme:
|
||||
icon:
|
||||
repo: fontawesome/brands/github
|
||||
font:
|
||||
text: Roboto
|
||||
text: Helvetica
|
||||
code: Roboto Mono
|
||||
|
||||
palette:
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = '8.0.116'
|
||||
__version__ = '8.0.117'
|
||||
|
||||
from ultralytics.hub import start
|
||||
from ultralytics.vit.rtdetr import RTDETR
|
||||
|
@ -172,7 +172,8 @@ class Exporter:
|
||||
|
||||
# Input
|
||||
im = torch.zeros(self.args.batch, 3, *self.imgsz).to(self.device)
|
||||
file = Path(getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml['yaml_file'])
|
||||
file = Path(
|
||||
getattr(model, 'pt_path', None) or getattr(model, 'yaml_file', None) or model.yaml.get('yaml_file', ''))
|
||||
if file.suffix == '.yaml':
|
||||
file = Path(file.name)
|
||||
|
||||
@ -207,7 +208,8 @@ class Exporter:
|
||||
self.im = im
|
||||
self.model = model
|
||||
self.file = file
|
||||
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else tuple(tuple(x.shape) for x in y)
|
||||
self.output_shape = tuple(y.shape) if isinstance(y, torch.Tensor) else \
|
||||
tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
|
||||
self.pretty_name = Path(self.model.yaml.get('yaml_file', self.file)).stem.replace('yolo', 'YOLO')
|
||||
trained_on = f'trained on {Path(self.args.data).name}' if self.args.data else '(untrained)'
|
||||
description = f'Ultralytics {self.pretty_name} model {trained_on}'
|
||||
|
@ -1,6 +1,12 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
# NAS model interface
|
||||
YOLO-NAS model interface.
|
||||
|
||||
Usage - Predict:
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
results = model.predict('ultralytics/assets/bus.jpg')
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
@ -33,11 +39,13 @@ class NAS:
|
||||
self.model.args = DEFAULT_CFG_DICT # attach args to model
|
||||
|
||||
# Standardize model
|
||||
self.model.fuse = lambda verbose: self.model
|
||||
self.model.fuse = lambda verbose=True: self.model
|
||||
self.model.stride = torch.tensor([32])
|
||||
self.model.names = dict(enumerate(self.model._class_names))
|
||||
self.model.is_fused = lambda: False # for info()
|
||||
self.model.yaml = {} # for info()
|
||||
self.model.pt_path = model # for export()
|
||||
self.model.task = 'detect' # for export()
|
||||
self.info()
|
||||
|
||||
@smart_inference_mode()
|
||||
|
Loading…
x
Reference in New Issue
Block a user