diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 45ccf57f..2b3e62f9 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -24,6 +24,10 @@ on: description: 'Run Benchmarks' default: false type: boolean + gpu: + description: 'Run GPU' + default: false + type: boolean jobs: HUB: @@ -47,6 +51,7 @@ jobs: pip install -e . --extra-index-url https://download.pytorch.org/whl/cpu - name: Check environment run: | + yolo checks echo "RUNNER_OS is ${{ runner.os }}" echo "GITHUB_EVENT_NAME is ${{ github.event_name }}" echo "GITHUB_WORKFLOW is ${{ github.workflow }}" @@ -110,6 +115,7 @@ jobs: yolo export format=tflite imgsz=32 || true - name: Check environment run: | + yolo checks echo "RUNNER_OS is ${{ runner.os }}" echo "GITHUB_EVENT_NAME is ${{ github.event_name }}" echo "GITHUB_WORKFLOW is ${{ github.workflow }}" @@ -159,7 +165,6 @@ jobs: - os: ubuntu-latest python-version: '3.8' # torch 1.8.0 requires python >=3.6, <=3.8 torch: '1.8.0' # min torch version CI https://pypi.org/project/torchvision/ - - os: gpu-latest # do not pass python-version steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 @@ -189,12 +194,7 @@ jobs: pip list - name: Pytest tests shell: bash # for Windows compatibility - run: | - if [ "${{ matrix.os }}" == "gpu-latest" ]; then - pytest --cov=ultralytics/ --cov-report xml tests/test_cuda.py - else - pytest --cov=ultralytics/ --cov-report xml tests/ - fi + run: pytest --cov=ultralytics/ --cov-report xml tests/ - name: Upload Coverage Reports to CodeCov if: github.repository == 'ultralytics/ultralytics' # && matrix.os == 'ubuntu-latest' && matrix.python-version == '3.11' uses: codecov/codecov-action@v3 @@ -203,13 +203,42 @@ jobs: env: CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} + GPU: + if: github.repository == 'ultralytics/ultralytics' && (github.event_name != 'workflow_dispatch' || github.event.inputs.gpu == 'true') + timeout-minutes: 60 + runs-on: gpu-latest + steps: + - uses: actions/checkout@v3 + - name: Install requirements + run: pip install -e . + - name: Check environment + run: | + yolo checks + echo "RUNNER_OS is ${{ runner.os }}" + echo "GITHUB_EVENT_NAME is ${{ github.event_name }}" + echo "GITHUB_WORKFLOW is ${{ github.workflow }}" + echo "GITHUB_ACTOR is ${{ github.actor }}" + echo "GITHUB_REPOSITORY is ${{ github.repository }}" + echo "GITHUB_REPOSITORY_OWNER is ${{ github.repository_owner }}" + python --version + pip --version + pip list + - name: Pytest tests + run: pytest --cov=ultralytics/ --cov-report xml tests/test_cuda.py + - name: Upload Coverage Reports to CodeCov + uses: codecov/codecov-action@v3 + with: + flags: GPU + env: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} + Summary: runs-on: ubuntu-latest - needs: [HUB, Benchmarks, Tests] # Add job names that you want to check for failure + needs: [HUB, Benchmarks, Tests, GPU] # Add job names that you want to check for failure if: always() # This ensures the job runs even if previous jobs fail steps: - name: Check for failure and notify - if: (needs.HUB.result == 'failure' || needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure') && github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push') + if: (needs.HUB.result == 'failure' || needs.Benchmarks.result == 'failure' || needs.Tests.result == 'failure' || needs.GPU.result == 'failure') && github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push') uses: slackapi/slack-github-action@v1.24.0 with: payload: | diff --git a/docker/Dockerfile b/docker/Dockerfile index 24e09cd1..d7ed382a 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -29,7 +29,7 @@ ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /u # Install pip packages RUN python3 -m pip install --upgrade pip wheel -RUN pip install --no-cache -e ".[export]" thop albumentations comet pycocotools +RUN pip install --no-cache -e ".[export]" thop albumentations comet pycocotools pytest-cov # Run exports to AutoInstall packages RUN yolo export model=tmp/yolov8n.pt format=edgetpu imgsz=32 diff --git a/docs/datasets/segment/index.md b/docs/datasets/segment/index.md index b87dc6e5..d5f34a4b 100644 --- a/docs/datasets/segment/index.md +++ b/docs/datasets/segment/index.md @@ -133,13 +133,15 @@ To auto-annotate your dataset using the Ultralytics framework, you can use the ` auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model='sam_b.pt') ``` -| Argument | Type | Description | Default | -|------------|---------------------|---------------------------------------------------------------------------------------------------------|--------------| -| data | str | Path to a folder containing images to be annotated. | | -| det_model | str, optional | Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. | 'yolov8x.pt' | -| sam_model | str, optional | Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. | 'sam_b.pt' | -| device | str, optional | Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | | -| output_dir | str, None, optional | Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. | None | +Certainly, here is the table updated with code snippets: + +| Argument | Type | Description | Default | +|--------------|-------------------------|-------------------------------------------------------------------------------------------------------------|----------------| +| `data` | `str` | Path to a folder containing images to be annotated. | `None` | +| `det_model` | `str, optional` | Pre-trained YOLO detection model. Defaults to `'yolov8x.pt'`. | `'yolov8x.pt'` | +| `sam_model` | `str, optional` | Pre-trained SAM segmentation model. Defaults to `'sam_b.pt'`. | `'sam_b.pt'` | +| `device` | `str, optional` | Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | `''` | +| `output_dir` | `str or None, optional` | Directory to save the annotated results. Defaults to a `'labels'` folder in the same directory as `'data'`. | `None` | The `auto_annotate` function takes the path to your images, along with optional arguments for specifying the pre-trained detection and [SAM segmentation models](https://docs.ultralytics.com/models/sam), the device to run the models on, and the output directory for saving the annotated results. diff --git a/tests/test_python.py b/tests/test_python.py index 159ca8b8..8236af35 100644 --- a/tests/test_python.py +++ b/tests/test_python.py @@ -13,6 +13,7 @@ from PIL import Image from torchvision.transforms import ToTensor from ultralytics import RTDETR, YOLO +from ultralytics.cfg import TASK2DATA from ultralytics.data.build import load_inference_source from ultralytics.utils import ASSETS, DEFAULT_CFG, LINUX, ONLINE, ROOT, SETTINGS, WINDOWS from ultralytics.utils.downloads import download @@ -275,11 +276,13 @@ def test_data_utils(): # from ultralytics.utils.files import WorkingDirectory # with WorkingDirectory(ROOT.parent / 'tests'): - download('https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip', unzip=False) - shutil.move('coco8.zip', TMP) - stats = HUBDatasetStats(TMP / 'coco8.zip', task='detect') - stats.get_json(save=True) - stats.process_images() + for task in 'detect', 'segment', 'pose': + file = Path(TASK2DATA[task]).with_suffix('.zip') # i.e. coco8.zip + download(f'https://github.com/ultralytics/hub/raw/main/example_datasets/{file}', unzip=False) + shutil.move(str(file), TMP) # Python 3.8 requires string input to shutil.move() + stats = HUBDatasetStats(TMP / file, task=task) + stats.get_json(save=True) + stats.process_images() autosplit(TMP / 'coco8') zip_directory(TMP / 'coco8/images/val') # zip