mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Add YOLOv5 dataset yamls (#207)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
e371e81aa0
commit
c7629e93bd
@ -227,7 +227,7 @@ class AutoBackend(nn.Module):
|
|||||||
if 'names' not in locals():
|
if 'names' not in locals():
|
||||||
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
||||||
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
||||||
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
names = yaml_load(ROOT / 'yolo/data/datasets/ImageNet.yaml')['names'] # human-readable names
|
||||||
|
|
||||||
self.__dict__.update(locals()) # assign all variables to self
|
self.__dict__.update(locals()) # assign all variables to self
|
||||||
|
|
||||||
|
74
ultralytics/yolo/data/datasets/Argoverse.yaml
Normal file
74
ultralytics/yolo/data/datasets/Argoverse.yaml
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
||||||
|
# Example usage: python train.py --data Argoverse.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── Argoverse ← downloads here (31.3 GB)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/Argoverse # dataset root dir
|
||||||
|
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
||||||
|
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
||||||
|
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: person
|
||||||
|
1: bicycle
|
||||||
|
2: car
|
||||||
|
3: motorcycle
|
||||||
|
4: bus
|
||||||
|
5: truck
|
||||||
|
6: traffic_light
|
||||||
|
7: stop_sign
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
|
download: |
|
||||||
|
import json
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
from utils.general import download, Path
|
||||||
|
|
||||||
|
|
||||||
|
def argoverse2yolo(set):
|
||||||
|
labels = {}
|
||||||
|
a = json.load(open(set, "rb"))
|
||||||
|
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
|
||||||
|
img_id = annot['image_id']
|
||||||
|
img_name = a['images'][img_id]['name']
|
||||||
|
img_label_name = f'{img_name[:-3]}txt'
|
||||||
|
|
||||||
|
cls = annot['category_id'] # instance class id
|
||||||
|
x_center, y_center, width, height = annot['bbox']
|
||||||
|
x_center = (x_center + width / 2) / 1920.0 # offset and scale
|
||||||
|
y_center = (y_center + height / 2) / 1200.0 # offset and scale
|
||||||
|
width /= 1920.0 # scale
|
||||||
|
height /= 1200.0 # scale
|
||||||
|
|
||||||
|
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
|
||||||
|
if not img_dir.exists():
|
||||||
|
img_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
k = str(img_dir / img_label_name)
|
||||||
|
if k not in labels:
|
||||||
|
labels[k] = []
|
||||||
|
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
|
||||||
|
|
||||||
|
for k in labels:
|
||||||
|
with open(k, "w") as f:
|
||||||
|
f.writelines(labels[k])
|
||||||
|
|
||||||
|
|
||||||
|
# Download
|
||||||
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
|
||||||
|
download(urls, dir=dir, delete=False)
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
annotations_dir = 'Argoverse-HD/annotations/'
|
||||||
|
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
|
||||||
|
for d in "train.json", "val.json":
|
||||||
|
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
|
54
ultralytics/yolo/data/datasets/GlobalWheat2020.yaml
Normal file
54
ultralytics/yolo/data/datasets/GlobalWheat2020.yaml
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
||||||
|
# Example usage: python train.py --data GlobalWheat2020.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/GlobalWheat2020 # dataset root dir
|
||||||
|
train: # train images (relative to 'path') 3422 images
|
||||||
|
- images/arvalis_1
|
||||||
|
- images/arvalis_2
|
||||||
|
- images/arvalis_3
|
||||||
|
- images/ethz_1
|
||||||
|
- images/rres_1
|
||||||
|
- images/inrae_1
|
||||||
|
- images/usask_1
|
||||||
|
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
|
||||||
|
- images/ethz_1
|
||||||
|
test: # test images (optional) 1276 images
|
||||||
|
- images/utokyo_1
|
||||||
|
- images/utokyo_2
|
||||||
|
- images/nau_1
|
||||||
|
- images/uq_1
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: wheat_head
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
|
download: |
|
||||||
|
from utils.general import download, Path
|
||||||
|
|
||||||
|
|
||||||
|
# Download
|
||||||
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
|
||||||
|
download(urls, dir=dir)
|
||||||
|
|
||||||
|
# Make Directories
|
||||||
|
for p in 'annotations', 'images', 'labels':
|
||||||
|
(dir / p).mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Move
|
||||||
|
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
|
||||||
|
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
|
||||||
|
(dir / p).rename(dir / 'images' / p) # move to /images
|
||||||
|
f = (dir / p).with_suffix('.json') # json file
|
||||||
|
if f.exists():
|
||||||
|
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
|
1022
ultralytics/yolo/data/datasets/ImageNet.yaml
Normal file
1022
ultralytics/yolo/data/datasets/ImageNet.yaml
Normal file
File diff suppressed because it is too large
Load Diff
438
ultralytics/yolo/data/datasets/Objects365.yaml
Normal file
438
ultralytics/yolo/data/datasets/Objects365.yaml
Normal file
@ -0,0 +1,438 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
# Objects365 dataset https://www.objects365.org/ by Megvii
|
||||||
|
# Example usage: python train.py --data Objects365.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/Objects365 # dataset root dir
|
||||||
|
train: images/train # train images (relative to 'path') 1742289 images
|
||||||
|
val: images/val # val images (relative to 'path') 80000 images
|
||||||
|
test: # test images (optional)
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: Person
|
||||||
|
1: Sneakers
|
||||||
|
2: Chair
|
||||||
|
3: Other Shoes
|
||||||
|
4: Hat
|
||||||
|
5: Car
|
||||||
|
6: Lamp
|
||||||
|
7: Glasses
|
||||||
|
8: Bottle
|
||||||
|
9: Desk
|
||||||
|
10: Cup
|
||||||
|
11: Street Lights
|
||||||
|
12: Cabinet/shelf
|
||||||
|
13: Handbag/Satchel
|
||||||
|
14: Bracelet
|
||||||
|
15: Plate
|
||||||
|
16: Picture/Frame
|
||||||
|
17: Helmet
|
||||||
|
18: Book
|
||||||
|
19: Gloves
|
||||||
|
20: Storage box
|
||||||
|
21: Boat
|
||||||
|
22: Leather Shoes
|
||||||
|
23: Flower
|
||||||
|
24: Bench
|
||||||
|
25: Potted Plant
|
||||||
|
26: Bowl/Basin
|
||||||
|
27: Flag
|
||||||
|
28: Pillow
|
||||||
|
29: Boots
|
||||||
|
30: Vase
|
||||||
|
31: Microphone
|
||||||
|
32: Necklace
|
||||||
|
33: Ring
|
||||||
|
34: SUV
|
||||||
|
35: Wine Glass
|
||||||
|
36: Belt
|
||||||
|
37: Monitor/TV
|
||||||
|
38: Backpack
|
||||||
|
39: Umbrella
|
||||||
|
40: Traffic Light
|
||||||
|
41: Speaker
|
||||||
|
42: Watch
|
||||||
|
43: Tie
|
||||||
|
44: Trash bin Can
|
||||||
|
45: Slippers
|
||||||
|
46: Bicycle
|
||||||
|
47: Stool
|
||||||
|
48: Barrel/bucket
|
||||||
|
49: Van
|
||||||
|
50: Couch
|
||||||
|
51: Sandals
|
||||||
|
52: Basket
|
||||||
|
53: Drum
|
||||||
|
54: Pen/Pencil
|
||||||
|
55: Bus
|
||||||
|
56: Wild Bird
|
||||||
|
57: High Heels
|
||||||
|
58: Motorcycle
|
||||||
|
59: Guitar
|
||||||
|
60: Carpet
|
||||||
|
61: Cell Phone
|
||||||
|
62: Bread
|
||||||
|
63: Camera
|
||||||
|
64: Canned
|
||||||
|
65: Truck
|
||||||
|
66: Traffic cone
|
||||||
|
67: Cymbal
|
||||||
|
68: Lifesaver
|
||||||
|
69: Towel
|
||||||
|
70: Stuffed Toy
|
||||||
|
71: Candle
|
||||||
|
72: Sailboat
|
||||||
|
73: Laptop
|
||||||
|
74: Awning
|
||||||
|
75: Bed
|
||||||
|
76: Faucet
|
||||||
|
77: Tent
|
||||||
|
78: Horse
|
||||||
|
79: Mirror
|
||||||
|
80: Power outlet
|
||||||
|
81: Sink
|
||||||
|
82: Apple
|
||||||
|
83: Air Conditioner
|
||||||
|
84: Knife
|
||||||
|
85: Hockey Stick
|
||||||
|
86: Paddle
|
||||||
|
87: Pickup Truck
|
||||||
|
88: Fork
|
||||||
|
89: Traffic Sign
|
||||||
|
90: Balloon
|
||||||
|
91: Tripod
|
||||||
|
92: Dog
|
||||||
|
93: Spoon
|
||||||
|
94: Clock
|
||||||
|
95: Pot
|
||||||
|
96: Cow
|
||||||
|
97: Cake
|
||||||
|
98: Dinning Table
|
||||||
|
99: Sheep
|
||||||
|
100: Hanger
|
||||||
|
101: Blackboard/Whiteboard
|
||||||
|
102: Napkin
|
||||||
|
103: Other Fish
|
||||||
|
104: Orange/Tangerine
|
||||||
|
105: Toiletry
|
||||||
|
106: Keyboard
|
||||||
|
107: Tomato
|
||||||
|
108: Lantern
|
||||||
|
109: Machinery Vehicle
|
||||||
|
110: Fan
|
||||||
|
111: Green Vegetables
|
||||||
|
112: Banana
|
||||||
|
113: Baseball Glove
|
||||||
|
114: Airplane
|
||||||
|
115: Mouse
|
||||||
|
116: Train
|
||||||
|
117: Pumpkin
|
||||||
|
118: Soccer
|
||||||
|
119: Skiboard
|
||||||
|
120: Luggage
|
||||||
|
121: Nightstand
|
||||||
|
122: Tea pot
|
||||||
|
123: Telephone
|
||||||
|
124: Trolley
|
||||||
|
125: Head Phone
|
||||||
|
126: Sports Car
|
||||||
|
127: Stop Sign
|
||||||
|
128: Dessert
|
||||||
|
129: Scooter
|
||||||
|
130: Stroller
|
||||||
|
131: Crane
|
||||||
|
132: Remote
|
||||||
|
133: Refrigerator
|
||||||
|
134: Oven
|
||||||
|
135: Lemon
|
||||||
|
136: Duck
|
||||||
|
137: Baseball Bat
|
||||||
|
138: Surveillance Camera
|
||||||
|
139: Cat
|
||||||
|
140: Jug
|
||||||
|
141: Broccoli
|
||||||
|
142: Piano
|
||||||
|
143: Pizza
|
||||||
|
144: Elephant
|
||||||
|
145: Skateboard
|
||||||
|
146: Surfboard
|
||||||
|
147: Gun
|
||||||
|
148: Skating and Skiing shoes
|
||||||
|
149: Gas stove
|
||||||
|
150: Donut
|
||||||
|
151: Bow Tie
|
||||||
|
152: Carrot
|
||||||
|
153: Toilet
|
||||||
|
154: Kite
|
||||||
|
155: Strawberry
|
||||||
|
156: Other Balls
|
||||||
|
157: Shovel
|
||||||
|
158: Pepper
|
||||||
|
159: Computer Box
|
||||||
|
160: Toilet Paper
|
||||||
|
161: Cleaning Products
|
||||||
|
162: Chopsticks
|
||||||
|
163: Microwave
|
||||||
|
164: Pigeon
|
||||||
|
165: Baseball
|
||||||
|
166: Cutting/chopping Board
|
||||||
|
167: Coffee Table
|
||||||
|
168: Side Table
|
||||||
|
169: Scissors
|
||||||
|
170: Marker
|
||||||
|
171: Pie
|
||||||
|
172: Ladder
|
||||||
|
173: Snowboard
|
||||||
|
174: Cookies
|
||||||
|
175: Radiator
|
||||||
|
176: Fire Hydrant
|
||||||
|
177: Basketball
|
||||||
|
178: Zebra
|
||||||
|
179: Grape
|
||||||
|
180: Giraffe
|
||||||
|
181: Potato
|
||||||
|
182: Sausage
|
||||||
|
183: Tricycle
|
||||||
|
184: Violin
|
||||||
|
185: Egg
|
||||||
|
186: Fire Extinguisher
|
||||||
|
187: Candy
|
||||||
|
188: Fire Truck
|
||||||
|
189: Billiards
|
||||||
|
190: Converter
|
||||||
|
191: Bathtub
|
||||||
|
192: Wheelchair
|
||||||
|
193: Golf Club
|
||||||
|
194: Briefcase
|
||||||
|
195: Cucumber
|
||||||
|
196: Cigar/Cigarette
|
||||||
|
197: Paint Brush
|
||||||
|
198: Pear
|
||||||
|
199: Heavy Truck
|
||||||
|
200: Hamburger
|
||||||
|
201: Extractor
|
||||||
|
202: Extension Cord
|
||||||
|
203: Tong
|
||||||
|
204: Tennis Racket
|
||||||
|
205: Folder
|
||||||
|
206: American Football
|
||||||
|
207: earphone
|
||||||
|
208: Mask
|
||||||
|
209: Kettle
|
||||||
|
210: Tennis
|
||||||
|
211: Ship
|
||||||
|
212: Swing
|
||||||
|
213: Coffee Machine
|
||||||
|
214: Slide
|
||||||
|
215: Carriage
|
||||||
|
216: Onion
|
||||||
|
217: Green beans
|
||||||
|
218: Projector
|
||||||
|
219: Frisbee
|
||||||
|
220: Washing Machine/Drying Machine
|
||||||
|
221: Chicken
|
||||||
|
222: Printer
|
||||||
|
223: Watermelon
|
||||||
|
224: Saxophone
|
||||||
|
225: Tissue
|
||||||
|
226: Toothbrush
|
||||||
|
227: Ice cream
|
||||||
|
228: Hot-air balloon
|
||||||
|
229: Cello
|
||||||
|
230: French Fries
|
||||||
|
231: Scale
|
||||||
|
232: Trophy
|
||||||
|
233: Cabbage
|
||||||
|
234: Hot dog
|
||||||
|
235: Blender
|
||||||
|
236: Peach
|
||||||
|
237: Rice
|
||||||
|
238: Wallet/Purse
|
||||||
|
239: Volleyball
|
||||||
|
240: Deer
|
||||||
|
241: Goose
|
||||||
|
242: Tape
|
||||||
|
243: Tablet
|
||||||
|
244: Cosmetics
|
||||||
|
245: Trumpet
|
||||||
|
246: Pineapple
|
||||||
|
247: Golf Ball
|
||||||
|
248: Ambulance
|
||||||
|
249: Parking meter
|
||||||
|
250: Mango
|
||||||
|
251: Key
|
||||||
|
252: Hurdle
|
||||||
|
253: Fishing Rod
|
||||||
|
254: Medal
|
||||||
|
255: Flute
|
||||||
|
256: Brush
|
||||||
|
257: Penguin
|
||||||
|
258: Megaphone
|
||||||
|
259: Corn
|
||||||
|
260: Lettuce
|
||||||
|
261: Garlic
|
||||||
|
262: Swan
|
||||||
|
263: Helicopter
|
||||||
|
264: Green Onion
|
||||||
|
265: Sandwich
|
||||||
|
266: Nuts
|
||||||
|
267: Speed Limit Sign
|
||||||
|
268: Induction Cooker
|
||||||
|
269: Broom
|
||||||
|
270: Trombone
|
||||||
|
271: Plum
|
||||||
|
272: Rickshaw
|
||||||
|
273: Goldfish
|
||||||
|
274: Kiwi fruit
|
||||||
|
275: Router/modem
|
||||||
|
276: Poker Card
|
||||||
|
277: Toaster
|
||||||
|
278: Shrimp
|
||||||
|
279: Sushi
|
||||||
|
280: Cheese
|
||||||
|
281: Notepaper
|
||||||
|
282: Cherry
|
||||||
|
283: Pliers
|
||||||
|
284: CD
|
||||||
|
285: Pasta
|
||||||
|
286: Hammer
|
||||||
|
287: Cue
|
||||||
|
288: Avocado
|
||||||
|
289: Hamimelon
|
||||||
|
290: Flask
|
||||||
|
291: Mushroom
|
||||||
|
292: Screwdriver
|
||||||
|
293: Soap
|
||||||
|
294: Recorder
|
||||||
|
295: Bear
|
||||||
|
296: Eggplant
|
||||||
|
297: Board Eraser
|
||||||
|
298: Coconut
|
||||||
|
299: Tape Measure/Ruler
|
||||||
|
300: Pig
|
||||||
|
301: Showerhead
|
||||||
|
302: Globe
|
||||||
|
303: Chips
|
||||||
|
304: Steak
|
||||||
|
305: Crosswalk Sign
|
||||||
|
306: Stapler
|
||||||
|
307: Camel
|
||||||
|
308: Formula 1
|
||||||
|
309: Pomegranate
|
||||||
|
310: Dishwasher
|
||||||
|
311: Crab
|
||||||
|
312: Hoverboard
|
||||||
|
313: Meat ball
|
||||||
|
314: Rice Cooker
|
||||||
|
315: Tuba
|
||||||
|
316: Calculator
|
||||||
|
317: Papaya
|
||||||
|
318: Antelope
|
||||||
|
319: Parrot
|
||||||
|
320: Seal
|
||||||
|
321: Butterfly
|
||||||
|
322: Dumbbell
|
||||||
|
323: Donkey
|
||||||
|
324: Lion
|
||||||
|
325: Urinal
|
||||||
|
326: Dolphin
|
||||||
|
327: Electric Drill
|
||||||
|
328: Hair Dryer
|
||||||
|
329: Egg tart
|
||||||
|
330: Jellyfish
|
||||||
|
331: Treadmill
|
||||||
|
332: Lighter
|
||||||
|
333: Grapefruit
|
||||||
|
334: Game board
|
||||||
|
335: Mop
|
||||||
|
336: Radish
|
||||||
|
337: Baozi
|
||||||
|
338: Target
|
||||||
|
339: French
|
||||||
|
340: Spring Rolls
|
||||||
|
341: Monkey
|
||||||
|
342: Rabbit
|
||||||
|
343: Pencil Case
|
||||||
|
344: Yak
|
||||||
|
345: Red Cabbage
|
||||||
|
346: Binoculars
|
||||||
|
347: Asparagus
|
||||||
|
348: Barbell
|
||||||
|
349: Scallop
|
||||||
|
350: Noddles
|
||||||
|
351: Comb
|
||||||
|
352: Dumpling
|
||||||
|
353: Oyster
|
||||||
|
354: Table Tennis paddle
|
||||||
|
355: Cosmetics Brush/Eyeliner Pencil
|
||||||
|
356: Chainsaw
|
||||||
|
357: Eraser
|
||||||
|
358: Lobster
|
||||||
|
359: Durian
|
||||||
|
360: Okra
|
||||||
|
361: Lipstick
|
||||||
|
362: Cosmetics Mirror
|
||||||
|
363: Curling
|
||||||
|
364: Table Tennis
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
|
download: |
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from utils.general import Path, check_requirements, download, np, xyxy2xywhn
|
||||||
|
|
||||||
|
check_requirements(('pycocotools>=2.0',))
|
||||||
|
from pycocotools.coco import COCO
|
||||||
|
|
||||||
|
# Make Directories
|
||||||
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
for p in 'images', 'labels':
|
||||||
|
(dir / p).mkdir(parents=True, exist_ok=True)
|
||||||
|
for q in 'train', 'val':
|
||||||
|
(dir / p / q).mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Train, Val Splits
|
||||||
|
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
|
||||||
|
print(f"Processing {split} in {patches} patches ...")
|
||||||
|
images, labels = dir / 'images' / split, dir / 'labels' / split
|
||||||
|
|
||||||
|
# Download
|
||||||
|
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
|
||||||
|
if split == 'train':
|
||||||
|
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
|
||||||
|
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
|
||||||
|
elif split == 'val':
|
||||||
|
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
|
||||||
|
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
|
||||||
|
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
|
||||||
|
|
||||||
|
# Move
|
||||||
|
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
|
||||||
|
f.rename(images / f.name) # move to /images/{split}
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
|
||||||
|
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
|
||||||
|
for cid, cat in enumerate(names):
|
||||||
|
catIds = coco.getCatIds(catNms=[cat])
|
||||||
|
imgIds = coco.getImgIds(catIds=catIds)
|
||||||
|
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
|
||||||
|
width, height = im["width"], im["height"]
|
||||||
|
path = Path(im["file_name"]) # image filename
|
||||||
|
try:
|
||||||
|
with open(labels / path.with_suffix('.txt').name, 'a') as file:
|
||||||
|
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
|
||||||
|
for a in coco.loadAnns(annIds):
|
||||||
|
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
|
||||||
|
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
|
||||||
|
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
|
||||||
|
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
53
ultralytics/yolo/data/datasets/SKU-110K.yaml
Normal file
53
ultralytics/yolo/data/datasets/SKU-110K.yaml
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
||||||
|
# Example usage: python train.py --data SKU-110K.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── SKU-110K ← downloads here (13.6 GB)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/SKU-110K # dataset root dir
|
||||||
|
train: train.txt # train images (relative to 'path') 8219 images
|
||||||
|
val: val.txt # val images (relative to 'path') 588 images
|
||||||
|
test: test.txt # test images (optional) 2936 images
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: object
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
|
download: |
|
||||||
|
import shutil
|
||||||
|
from tqdm import tqdm
|
||||||
|
from utils.general import np, pd, Path, download, xyxy2xywh
|
||||||
|
|
||||||
|
|
||||||
|
# Download
|
||||||
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
parent = Path(dir.parent) # download dir
|
||||||
|
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
|
||||||
|
download(urls, dir=parent, delete=False)
|
||||||
|
|
||||||
|
# Rename directories
|
||||||
|
if dir.exists():
|
||||||
|
shutil.rmtree(dir)
|
||||||
|
(parent / 'SKU110K_fixed').rename(dir) # rename dir
|
||||||
|
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
|
||||||
|
|
||||||
|
# Convert labels
|
||||||
|
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
|
||||||
|
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
|
||||||
|
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
|
||||||
|
images, unique_images = x[:, 0], np.unique(x[:, 0])
|
||||||
|
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
|
||||||
|
f.writelines(f'./images/{s}\n' for s in unique_images)
|
||||||
|
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
|
||||||
|
cls = 0 # single-class dataset
|
||||||
|
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
|
||||||
|
for r in x[images == im]:
|
||||||
|
w, h = r[6], r[7] # image width, height
|
||||||
|
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
|
||||||
|
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
|
100
ultralytics/yolo/data/datasets/VOC.yaml
Normal file
100
ultralytics/yolo/data/datasets/VOC.yaml
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
||||||
|
# Example usage: python train.py --data VOC.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── VOC ← downloads here (2.8 GB)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/VOC
|
||||||
|
train: # train images (relative to 'path') 16551 images
|
||||||
|
- images/train2012
|
||||||
|
- images/train2007
|
||||||
|
- images/val2012
|
||||||
|
- images/val2007
|
||||||
|
val: # val images (relative to 'path') 4952 images
|
||||||
|
- images/test2007
|
||||||
|
test: # test images (optional)
|
||||||
|
- images/test2007
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: aeroplane
|
||||||
|
1: bicycle
|
||||||
|
2: bird
|
||||||
|
3: boat
|
||||||
|
4: bottle
|
||||||
|
5: bus
|
||||||
|
6: car
|
||||||
|
7: cat
|
||||||
|
8: chair
|
||||||
|
9: cow
|
||||||
|
10: diningtable
|
||||||
|
11: dog
|
||||||
|
12: horse
|
||||||
|
13: motorbike
|
||||||
|
14: person
|
||||||
|
15: pottedplant
|
||||||
|
16: sheep
|
||||||
|
17: sofa
|
||||||
|
18: train
|
||||||
|
19: tvmonitor
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
|
download: |
|
||||||
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
from utils.general import download, Path
|
||||||
|
|
||||||
|
|
||||||
|
def convert_label(path, lb_path, year, image_id):
|
||||||
|
def convert_box(size, box):
|
||||||
|
dw, dh = 1. / size[0], 1. / size[1]
|
||||||
|
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
|
||||||
|
return x * dw, y * dh, w * dw, h * dh
|
||||||
|
|
||||||
|
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
|
||||||
|
out_file = open(lb_path, 'w')
|
||||||
|
tree = ET.parse(in_file)
|
||||||
|
root = tree.getroot()
|
||||||
|
size = root.find('size')
|
||||||
|
w = int(size.find('width').text)
|
||||||
|
h = int(size.find('height').text)
|
||||||
|
|
||||||
|
names = list(yaml['names'].values()) # names list
|
||||||
|
for obj in root.iter('object'):
|
||||||
|
cls = obj.find('name').text
|
||||||
|
if cls in names and int(obj.find('difficult').text) != 1:
|
||||||
|
xmlbox = obj.find('bndbox')
|
||||||
|
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
|
||||||
|
cls_id = names.index(cls) # class id
|
||||||
|
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
|
||||||
|
|
||||||
|
|
||||||
|
# Download
|
||||||
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
||||||
|
urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
||||||
|
f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
||||||
|
f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
||||||
|
download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
path = dir / 'images/VOCdevkit'
|
||||||
|
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
|
||||||
|
imgs_path = dir / 'images' / f'{image_set}{year}'
|
||||||
|
lbs_path = dir / 'labels' / f'{image_set}{year}'
|
||||||
|
imgs_path.mkdir(exist_ok=True, parents=True)
|
||||||
|
lbs_path.mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
|
with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
|
||||||
|
image_ids = f.read().strip().split()
|
||||||
|
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
|
||||||
|
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
|
||||||
|
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
|
||||||
|
f.rename(imgs_path / f.name) # move image
|
||||||
|
convert_label(path, lb_path, year, id) # convert labels to YOLO format
|
70
ultralytics/yolo/data/datasets/VisDrone.yaml
Normal file
70
ultralytics/yolo/data/datasets/VisDrone.yaml
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
||||||
|
# Example usage: python train.py --data VisDrone.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── VisDrone ← downloads here (2.3 GB)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/VisDrone # dataset root dir
|
||||||
|
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
||||||
|
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
||||||
|
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: pedestrian
|
||||||
|
1: people
|
||||||
|
2: bicycle
|
||||||
|
3: car
|
||||||
|
4: van
|
||||||
|
5: truck
|
||||||
|
6: tricycle
|
||||||
|
7: awning-tricycle
|
||||||
|
8: bus
|
||||||
|
9: motor
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
|
download: |
|
||||||
|
from utils.general import download, os, Path
|
||||||
|
|
||||||
|
def visdrone2yolo(dir):
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
def convert_box(size, box):
|
||||||
|
# Convert VisDrone box to YOLO xywh box
|
||||||
|
dw = 1. / size[0]
|
||||||
|
dh = 1. / size[1]
|
||||||
|
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
|
||||||
|
|
||||||
|
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
|
||||||
|
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
|
||||||
|
for f in pbar:
|
||||||
|
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
|
||||||
|
lines = []
|
||||||
|
with open(f, 'r') as file: # read annotation.txt
|
||||||
|
for row in [x.split(',') for x in file.read().strip().splitlines()]:
|
||||||
|
if row[4] == '0': # VisDrone 'ignored regions' class 0
|
||||||
|
continue
|
||||||
|
cls = int(row[5]) - 1
|
||||||
|
box = convert_box(img_size, tuple(map(int, row[:4])))
|
||||||
|
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
||||||
|
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
|
||||||
|
fl.writelines(lines) # write label.txt
|
||||||
|
|
||||||
|
|
||||||
|
# Download
|
||||||
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
|
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
||||||
|
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
||||||
|
download(urls, dir=dir, curl=True, threads=4)
|
||||||
|
|
||||||
|
# Convert
|
||||||
|
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
||||||
|
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
|
153
ultralytics/yolo/data/datasets/xView.yaml
Normal file
153
ultralytics/yolo/data/datasets/xView.yaml
Normal file
@ -0,0 +1,153 @@
|
|||||||
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
||||||
|
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
||||||
|
# Example usage: python train.py --data xView.yaml
|
||||||
|
# parent
|
||||||
|
# ├── yolov5
|
||||||
|
# └── datasets
|
||||||
|
# └── xView ← downloads here (20.7 GB)
|
||||||
|
|
||||||
|
|
||||||
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
||||||
|
path: ../datasets/xView # dataset root dir
|
||||||
|
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
||||||
|
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
names:
|
||||||
|
0: Fixed-wing Aircraft
|
||||||
|
1: Small Aircraft
|
||||||
|
2: Cargo Plane
|
||||||
|
3: Helicopter
|
||||||
|
4: Passenger Vehicle
|
||||||
|
5: Small Car
|
||||||
|
6: Bus
|
||||||
|
7: Pickup Truck
|
||||||
|
8: Utility Truck
|
||||||
|
9: Truck
|
||||||
|
10: Cargo Truck
|
||||||
|
11: Truck w/Box
|
||||||
|
12: Truck Tractor
|
||||||
|
13: Trailer
|
||||||
|
14: Truck w/Flatbed
|
||||||
|
15: Truck w/Liquid
|
||||||
|
16: Crane Truck
|
||||||
|
17: Railway Vehicle
|
||||||
|
18: Passenger Car
|
||||||
|
19: Cargo Car
|
||||||
|
20: Flat Car
|
||||||
|
21: Tank car
|
||||||
|
22: Locomotive
|
||||||
|
23: Maritime Vessel
|
||||||
|
24: Motorboat
|
||||||
|
25: Sailboat
|
||||||
|
26: Tugboat
|
||||||
|
27: Barge
|
||||||
|
28: Fishing Vessel
|
||||||
|
29: Ferry
|
||||||
|
30: Yacht
|
||||||
|
31: Container Ship
|
||||||
|
32: Oil Tanker
|
||||||
|
33: Engineering Vehicle
|
||||||
|
34: Tower crane
|
||||||
|
35: Container Crane
|
||||||
|
36: Reach Stacker
|
||||||
|
37: Straddle Carrier
|
||||||
|
38: Mobile Crane
|
||||||
|
39: Dump Truck
|
||||||
|
40: Haul Truck
|
||||||
|
41: Scraper/Tractor
|
||||||
|
42: Front loader/Bulldozer
|
||||||
|
43: Excavator
|
||||||
|
44: Cement Mixer
|
||||||
|
45: Ground Grader
|
||||||
|
46: Hut/Tent
|
||||||
|
47: Shed
|
||||||
|
48: Building
|
||||||
|
49: Aircraft Hangar
|
||||||
|
50: Damaged Building
|
||||||
|
51: Facility
|
||||||
|
52: Construction Site
|
||||||
|
53: Vehicle Lot
|
||||||
|
54: Helipad
|
||||||
|
55: Storage Tank
|
||||||
|
56: Shipping container lot
|
||||||
|
57: Shipping Container
|
||||||
|
58: Pylon
|
||||||
|
59: Tower
|
||||||
|
|
||||||
|
|
||||||
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
||||||
|
download: |
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from utils.dataloaders import autosplit
|
||||||
|
from utils.general import download, xyxy2xywhn
|
||||||
|
|
||||||
|
|
||||||
|
def convert_labels(fname=Path('xView/xView_train.geojson')):
|
||||||
|
# Convert xView geoJSON labels to YOLO format
|
||||||
|
path = fname.parent
|
||||||
|
with open(fname) as f:
|
||||||
|
print(f'Loading {fname}...')
|
||||||
|
data = json.load(f)
|
||||||
|
|
||||||
|
# Make dirs
|
||||||
|
labels = Path(path / 'labels' / 'train')
|
||||||
|
os.system(f'rm -rf {labels}')
|
||||||
|
labels.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# xView classes 11-94 to 0-59
|
||||||
|
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
|
||||||
|
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
|
||||||
|
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
|
||||||
|
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
|
||||||
|
|
||||||
|
shapes = {}
|
||||||
|
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
|
||||||
|
p = feature['properties']
|
||||||
|
if p['bounds_imcoords']:
|
||||||
|
id = p['image_id']
|
||||||
|
file = path / 'train_images' / id
|
||||||
|
if file.exists(): # 1395.tif missing
|
||||||
|
try:
|
||||||
|
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
|
||||||
|
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
|
||||||
|
cls = p['type_id']
|
||||||
|
cls = xview_class2index[int(cls)] # xView class to 0-60
|
||||||
|
assert 59 >= cls >= 0, f'incorrect class index {cls}'
|
||||||
|
|
||||||
|
# Write YOLO label
|
||||||
|
if id not in shapes:
|
||||||
|
shapes[id] = Image.open(file).size
|
||||||
|
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
|
||||||
|
with open((labels / id).with_suffix('.txt'), 'a') as f:
|
||||||
|
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
|
||||||
|
except Exception as e:
|
||||||
|
print(f'WARNING: skipping one label for {file}: {e}')
|
||||||
|
|
||||||
|
|
||||||
|
# Download manually from https://challenge.xviewdataset.org
|
||||||
|
dir = Path(yaml['path']) # dataset root dir
|
||||||
|
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
|
||||||
|
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
|
||||||
|
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
|
||||||
|
# download(urls, dir=dir, delete=False)
|
||||||
|
|
||||||
|
# Convert labels
|
||||||
|
convert_labels(dir / 'xView_train.geojson')
|
||||||
|
|
||||||
|
# Move images
|
||||||
|
images = Path(dir / 'images')
|
||||||
|
images.mkdir(parents=True, exist_ok=True)
|
||||||
|
Path(dir / 'train_images').rename(dir / 'images' / 'train')
|
||||||
|
Path(dir / 'val_images').rename(dir / 'images' / 'val')
|
||||||
|
|
||||||
|
# Split
|
||||||
|
autosplit(dir / 'images' / 'train')
|
@ -288,5 +288,6 @@ def check_dataset(dataset: str):
|
|||||||
train_set = data_dir / "train"
|
train_set = data_dir / "train"
|
||||||
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
|
||||||
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
|
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
|
||||||
names = [name for name in os.listdir(data_dir / 'train') if os.path.isdir(data_dir / 'train' / name)]
|
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list
|
||||||
|
names = dict(enumerate(sorted(names)))
|
||||||
return {"train": train_set, "val": test_set, "nc": nc, "names": names}
|
return {"train": train_set, "val": test_set, "nc": nc, "names": names}
|
||||||
|
@ -256,7 +256,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_torchscript(self, prefix=colorstr('TorchScript:')):
|
def _export_torchscript(self, prefix=colorstr('TorchScript:')):
|
||||||
# YOLOv5 TorchScript model export
|
# YOLOv8 TorchScript model export
|
||||||
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||||||
f = self.file.with_suffix('.torchscript')
|
f = self.file.with_suffix('.torchscript')
|
||||||
|
|
||||||
@ -273,7 +273,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_onnx(self, prefix=colorstr('ONNX:')):
|
def _export_onnx(self, prefix=colorstr('ONNX:')):
|
||||||
# YOLOv5 ONNX export
|
# YOLOv8 ONNX export
|
||||||
check_requirements('onnx>=1.12.0')
|
check_requirements('onnx>=1.12.0')
|
||||||
import onnx # noqa
|
import onnx # noqa
|
||||||
|
|
||||||
@ -326,7 +326,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_openvino(self, prefix=colorstr('OpenVINO:')):
|
def _export_openvino(self, prefix=colorstr('OpenVINO:')):
|
||||||
# YOLOv5 OpenVINO export
|
# YOLOv8 OpenVINO export
|
||||||
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||||||
import openvino.inference_engine as ie # noqa
|
import openvino.inference_engine as ie # noqa
|
||||||
|
|
||||||
@ -341,7 +341,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_paddle(self, prefix=colorstr('PaddlePaddle:')):
|
def _export_paddle(self, prefix=colorstr('PaddlePaddle:')):
|
||||||
# YOLOv5 Paddle export
|
# YOLOv8 Paddle export
|
||||||
check_requirements(('paddlepaddle', 'x2paddle'))
|
check_requirements(('paddlepaddle', 'x2paddle'))
|
||||||
import x2paddle # noqa
|
import x2paddle # noqa
|
||||||
from x2paddle.convert import pytorch2paddle # noqa
|
from x2paddle.convert import pytorch2paddle # noqa
|
||||||
@ -355,7 +355,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_coreml(self, prefix=colorstr('CoreML:')):
|
def _export_coreml(self, prefix=colorstr('CoreML:')):
|
||||||
# YOLOv5 CoreML export
|
# YOLOv8 CoreML export
|
||||||
check_requirements('coremltools>=6.0')
|
check_requirements('coremltools>=6.0')
|
||||||
import coremltools as ct # noqa
|
import coremltools as ct # noqa
|
||||||
|
|
||||||
@ -395,7 +395,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_engine(self, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
def _export_engine(self, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
||||||
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
# YOLOv8 TensorRT export https://developer.nvidia.com/tensorrt
|
||||||
assert self.im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `device==0`'
|
assert self.im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `device==0`'
|
||||||
try:
|
try:
|
||||||
import tensorrt as trt # noqa
|
import tensorrt as trt # noqa
|
||||||
@ -460,7 +460,7 @@ class Exporter:
|
|||||||
conf_thres=0.25,
|
conf_thres=0.25,
|
||||||
prefix=colorstr('TensorFlow SavedModel:')):
|
prefix=colorstr('TensorFlow SavedModel:')):
|
||||||
|
|
||||||
# YOLOv5 TensorFlow SavedModel export
|
# YOLOv8 TensorFlow SavedModel export
|
||||||
try:
|
try:
|
||||||
import tensorflow as tf # noqa
|
import tensorflow as tf # noqa
|
||||||
except ImportError:
|
except ImportError:
|
||||||
@ -493,7 +493,7 @@ class Exporter:
|
|||||||
iou_thres=0.45,
|
iou_thres=0.45,
|
||||||
conf_thres=0.25,
|
conf_thres=0.25,
|
||||||
prefix=colorstr('TensorFlow SavedModel:')):
|
prefix=colorstr('TensorFlow SavedModel:')):
|
||||||
# YOLOv5 TensorFlow SavedModel export
|
# YOLOv8 TensorFlow SavedModel export
|
||||||
try:
|
try:
|
||||||
import tensorflow as tf # noqa
|
import tensorflow as tf # noqa
|
||||||
except ImportError:
|
except ImportError:
|
||||||
@ -533,7 +533,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_pb(self, keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
def _export_pb(self, keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||||||
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
# YOLOv8 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
||||||
import tensorflow as tf # noqa
|
import tensorflow as tf # noqa
|
||||||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
|
||||||
|
|
||||||
@ -549,7 +549,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_tflite(self, keras_model, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
def _export_tflite(self, keras_model, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
||||||
# YOLOv5 TensorFlow Lite export
|
# YOLOv8 TensorFlow Lite export
|
||||||
import tensorflow as tf # noqa
|
import tensorflow as tf # noqa
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||||||
@ -589,7 +589,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')):
|
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')):
|
||||||
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
# YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
||||||
cmd = 'edgetpu_compiler --version'
|
cmd = 'edgetpu_compiler --version'
|
||||||
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
||||||
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
||||||
@ -615,7 +615,7 @@ class Exporter:
|
|||||||
|
|
||||||
@try_export
|
@try_export
|
||||||
def _export_tfjs(self, prefix=colorstr('TensorFlow.js:')):
|
def _export_tfjs(self, prefix=colorstr('TensorFlow.js:')):
|
||||||
# YOLOv5 TensorFlow.js export
|
# YOLOv8 TensorFlow.js export
|
||||||
check_requirements('tensorflowjs')
|
check_requirements('tensorflowjs')
|
||||||
import tensorflowjs as tfjs # noqa
|
import tensorflowjs as tfjs # noqa
|
||||||
|
|
||||||
@ -673,7 +673,7 @@ class Exporter:
|
|||||||
tmp_file.unlink()
|
tmp_file.unlink()
|
||||||
|
|
||||||
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
|
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
|
||||||
# YOLOv5 CoreML pipeline
|
# YOLOv8 CoreML pipeline
|
||||||
import coremltools as ct # noqa
|
import coremltools as ct # noqa
|
||||||
|
|
||||||
LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
|
LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
|
||||||
|
@ -127,13 +127,26 @@ class BasePredictor:
|
|||||||
if self.args.show:
|
if self.args.show:
|
||||||
self.args.show = check_imshow(warn=True)
|
self.args.show = check_imshow(warn=True)
|
||||||
if webcam:
|
if webcam:
|
||||||
self.args.show = check_imshow(warn=True)
|
self.dataset = LoadStreams(source,
|
||||||
self.dataset = LoadStreams(source, imgsz=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
|
imgsz=imgsz,
|
||||||
|
stride=stride,
|
||||||
|
auto=pt,
|
||||||
|
transforms=getattr(model.model, 'transforms', None),
|
||||||
|
vid_stride=self.args.vid_stride)
|
||||||
bs = len(self.dataset)
|
bs = len(self.dataset)
|
||||||
elif screenshot:
|
elif screenshot:
|
||||||
self.dataset = LoadScreenshots(source, imgsz=imgsz, stride=stride, auto=pt)
|
self.dataset = LoadScreenshots(source,
|
||||||
|
imgsz=imgsz,
|
||||||
|
stride=stride,
|
||||||
|
auto=pt,
|
||||||
|
transforms=getattr(model.model, 'transforms', None))
|
||||||
else:
|
else:
|
||||||
self.dataset = LoadImages(source, imgsz=imgsz, stride=stride, auto=pt, vid_stride=self.args.vid_stride)
|
self.dataset = LoadImages(source,
|
||||||
|
imgsz=imgsz,
|
||||||
|
stride=stride,
|
||||||
|
auto=pt,
|
||||||
|
transforms=getattr(model.model, 'transforms', None),
|
||||||
|
vid_stride=self.args.vid_stride)
|
||||||
self.vid_path, self.vid_writer = [None] * bs, [None] * bs
|
self.vid_path, self.vid_writer = [None] * bs, [None] * bs
|
||||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
||||||
|
|
||||||
|
@ -38,7 +38,7 @@ class ClassificationPredictor(BasePredictor):
|
|||||||
log_string += '%gx%g ' % im.shape[2:] # print string
|
log_string += '%gx%g ' % im.shape[2:] # print string
|
||||||
self.annotator = self.get_annotator(im0)
|
self.annotator = self.get_annotator(im0)
|
||||||
|
|
||||||
prob = preds[idx]
|
prob = preds[idx].softmax(0)
|
||||||
self.all_outputs.append(prob)
|
self.all_outputs.append(prob)
|
||||||
# Print results
|
# Print results
|
||||||
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||||
|
@ -25,6 +25,8 @@ class ClassificationTrainer(BaseTrainer):
|
|||||||
|
|
||||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||||
model = ClassificationModel(cfg, nc=self.data["nc"])
|
model = ClassificationModel(cfg, nc=self.data["nc"])
|
||||||
|
if weights:
|
||||||
|
model.load(weights)
|
||||||
|
|
||||||
pretrained = False
|
pretrained = False
|
||||||
for m in model.modules():
|
for m in model.modules():
|
||||||
@ -35,9 +37,6 @@ class ClassificationTrainer(BaseTrainer):
|
|||||||
for p in model.parameters():
|
for p in model.parameters():
|
||||||
p.requires_grad = True # for training
|
p.requires_grad = True # for training
|
||||||
|
|
||||||
if weights:
|
|
||||||
model.load(weights)
|
|
||||||
|
|
||||||
# Update defaults
|
# Update defaults
|
||||||
if self.args.imgsz == 640:
|
if self.args.imgsz == 640:
|
||||||
self.args.imgsz = 224
|
self.args.imgsz = 224
|
||||||
@ -68,12 +67,15 @@ class ClassificationTrainer(BaseTrainer):
|
|||||||
return # dont return ckpt. Classification doesn't support resume
|
return # dont return ckpt. Classification doesn't support resume
|
||||||
|
|
||||||
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
|
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
|
||||||
return build_classification_dataloader(path=dataset_path,
|
loader = build_classification_dataloader(path=dataset_path,
|
||||||
imgsz=self.args.imgsz,
|
imgsz=self.args.imgsz,
|
||||||
batch_size=batch_size if mode == "train" else (batch_size * 2),
|
batch_size=batch_size if mode == "train" else (batch_size * 2),
|
||||||
augment=mode == "train",
|
augment=mode == "train",
|
||||||
rank=rank,
|
rank=rank,
|
||||||
workers=self.args.workers)
|
workers=self.args.workers)
|
||||||
|
if mode != "train":
|
||||||
|
self.model.transforms = loader.dataset.torch_transforms # attach inference transforms
|
||||||
|
return loader
|
||||||
|
|
||||||
def preprocess_batch(self, batch):
|
def preprocess_batch(self, batch):
|
||||||
batch["img"] = batch["img"].to(self.device)
|
batch["img"] = batch["img"].to(self.device)
|
||||||
@ -141,19 +143,18 @@ def train(cfg):
|
|||||||
cfg.weight_decay = 5e-5
|
cfg.weight_decay = 5e-5
|
||||||
cfg.label_smoothing = 0.1
|
cfg.label_smoothing = 0.1
|
||||||
cfg.warmup_epochs = 0.0
|
cfg.warmup_epochs = 0.0
|
||||||
trainer = ClassificationTrainer(cfg)
|
# trainer = ClassificationTrainer(cfg)
|
||||||
trainer.train()
|
# trainer.train()
|
||||||
# from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
# model = YOLO(cfg.model)
|
model = YOLO(cfg.model)
|
||||||
# model.train(**cfg)
|
model.train(**cfg)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
"""
|
"""
|
||||||
CLI usage:
|
yolo task=classify mode=train model=yolov8n-cls.pt data=mnist160 epochs=10 imgsz=32
|
||||||
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=imagenette160 epochs=1 imgsz=224
|
yolo task=classify mode=val model=runs/classify/train/weights/last.pt data=mnist160 imgsz=32
|
||||||
|
yolo task=classify mode=predict model=runs/classify/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg
|
||||||
TODO:
|
yolo mode=export model=runs/classify/train/weights/last.pt imgsz=32 format=torchscript
|
||||||
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
|
||||||
"""
|
"""
|
||||||
train()
|
train()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user