mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Add CoreML iOS updates (#121)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
parent
fec13ec773
commit
c9f3e469cb
@ -25,7 +25,7 @@ pandas>=1.1.4
|
|||||||
seaborn>=0.11.0
|
seaborn>=0.11.0
|
||||||
|
|
||||||
# Export --------------------------------------
|
# Export --------------------------------------
|
||||||
# coremltools>=5.2 # CoreML export
|
# coremltools>=6.0 # CoreML export
|
||||||
# onnx>=1.12.0 # ONNX export
|
# onnx>=1.12.0 # ONNX export
|
||||||
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
# onnx-simplifier>=0.4.1 # ONNX simplifier
|
||||||
# nvidia-pyindex # TensorRT export
|
# nvidia-pyindex # TensorRT export
|
||||||
|
@ -89,7 +89,7 @@ class DetectionModel(BaseModel):
|
|||||||
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||||||
self.yaml['nc'] = nc # override yaml value
|
self.yaml['nc'] = nc # override yaml value
|
||||||
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist
|
||||||
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict
|
||||||
self.inplace = self.yaml.get('inplace', True)
|
self.inplace = self.yaml.get('inplace', True)
|
||||||
|
|
||||||
# Build strides
|
# Build strides
|
||||||
|
@ -73,6 +73,7 @@ dynamic: False # ONNX/TF/TensorRT: dynamic axes
|
|||||||
simplify: False # ONNX: simplify model
|
simplify: False # ONNX: simplify model
|
||||||
opset: 17 # ONNX: opset version
|
opset: 17 # ONNX: opset version
|
||||||
workspace: 4 # TensorRT: workspace size (GB)
|
workspace: 4 # TensorRT: workspace size (GB)
|
||||||
|
nms: False # CoreML: add NMS
|
||||||
|
|
||||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||||||
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||||
|
@ -64,6 +64,7 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
import ultralytics
|
||||||
from ultralytics.nn.modules import Detect, Segment
|
from ultralytics.nn.modules import Detect, Segment
|
||||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_weights
|
||||||
from ultralytics.yolo.configs import get_config
|
from ultralytics.yolo.configs import get_config
|
||||||
@ -73,7 +74,7 @@ from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, get_default
|
|||||||
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
|
||||||
from ultralytics.yolo.utils.files import file_size, increment_path, yaml_save
|
from ultralytics.yolo.utils.files import file_size, increment_path, yaml_save
|
||||||
from ultralytics.yolo.utils.ops import Profile
|
from ultralytics.yolo.utils.ops import Profile
|
||||||
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
|
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, select_device, smart_inference_mode
|
||||||
|
|
||||||
MACOS = platform.system() == 'Darwin' # macOS environment
|
MACOS = platform.system() == 'Darwin' # macOS environment
|
||||||
|
|
||||||
@ -119,7 +120,7 @@ class Exporter:
|
|||||||
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
|
def __init__(self, config=DEFAULT_CONFIG, overrides={}):
|
||||||
self.args = get_config(config, overrides)
|
self.args = get_config(config, overrides)
|
||||||
project = self.args.project or f"runs/{self.args.task}"
|
project = self.args.project or f"runs/{self.args.task}"
|
||||||
name = self.args.name or f"{self.args.mode}"
|
name = self.args.name or "exp" # hardcode mode as export doesn't require it
|
||||||
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
|
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
|
||||||
self.save_dir.mkdir(parents=True, exist_ok=True)
|
self.save_dir.mkdir(parents=True, exist_ok=True)
|
||||||
self.imgsz = self.args.imgsz
|
self.imgsz = self.args.imgsz
|
||||||
@ -136,22 +137,20 @@ class Exporter:
|
|||||||
# Load PyTorch model
|
# Load PyTorch model
|
||||||
self.device = select_device(self.args.device)
|
self.device = select_device(self.args.device)
|
||||||
if self.args.half:
|
if self.args.half:
|
||||||
assert self.device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
if self.device.type == 'cpu' or not coreml:
|
||||||
|
LOGGER.info('half=True only compatible with GPU or CoreML export, i.e. use device=0 or format=coreml')
|
||||||
|
self.args.half = False
|
||||||
assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic'
|
assert not self.args.dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic'
|
||||||
|
|
||||||
# Checks
|
# Checks
|
||||||
if isinstance(self.imgsz, int):
|
self.imgsz = check_imgsz(self.imgsz, stride=model.stride, min_dim=2) # check image size
|
||||||
self.imgsz = [self.imgsz]
|
|
||||||
self.imgsz *= 2 if len(self.imgsz) == 1 else 1 # expand
|
|
||||||
if self.args.optimize:
|
if self.args.optimize:
|
||||||
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
assert self.device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
||||||
|
|
||||||
# Input
|
# Input
|
||||||
self.args.batch_size = 1 # TODO: resolve this issue, default 16 not fit for export
|
self.args.batch_size = 1 # TODO: resolve this issue, default 16 not fit for export
|
||||||
gs = int(max(model.stride)) # grid size (max stride)
|
im = torch.zeros(self.args.batch_size, 3, *self.imgsz).to(self.device)
|
||||||
imgsz = [check_imgsz(x, gs) for x in self.imgsz] # verify img_size are gs-multiples
|
file = Path(getattr(model, 'yaml_file', None) or Path(model.yaml['yaml_file']).name)
|
||||||
im = torch.zeros(self.args.batch_size, 3, *imgsz).to(self.device) # image size(1,3,320,192) BCHW iDetection
|
|
||||||
file = Path(Path(model.yaml['yaml_file']).name)
|
|
||||||
|
|
||||||
# Update model
|
# Update model
|
||||||
model = deepcopy(model)
|
model = deepcopy(model)
|
||||||
@ -182,7 +181,9 @@ class Exporter:
|
|||||||
self.im = im
|
self.im = im
|
||||||
self.model = model
|
self.model = model
|
||||||
self.file = file
|
self.file = file
|
||||||
|
self.output_shape = tuple(y.shape)
|
||||||
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
self.metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
||||||
|
self.pretty_name = self.file.stem.replace('yolo', 'YOLO')
|
||||||
|
|
||||||
# Exports
|
# Exports
|
||||||
f = [''] * len(fmts) # exported filenames
|
f = [''] * len(fmts) # exported filenames
|
||||||
@ -202,7 +203,7 @@ class Exporter:
|
|||||||
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
|
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
|
||||||
agnostic_nms=self.args.agnostic_nms or tfjs)
|
agnostic_nms=self.args.agnostic_nms or tfjs)
|
||||||
if pb or tfjs: # pb prerequisite to tfjs
|
if pb or tfjs: # pb prerequisite to tfjs
|
||||||
f[6], _ = self._export_pb(s_model,)
|
f[6], _ = self._export_pb(s_model)
|
||||||
if tflite or edgetpu:
|
if tflite or edgetpu:
|
||||||
f[7], _ = self._export_tflite(s_model,
|
f[7], _ = self._export_tflite(s_model,
|
||||||
int8=self.args.int8 or edgetpu,
|
int8=self.args.int8 or edgetpu,
|
||||||
@ -220,11 +221,8 @@ class Exporter:
|
|||||||
# Finish
|
# Finish
|
||||||
f = [str(x) for x in f if x] # filter out '' and None
|
f = [str(x) for x in f if x] # filter out '' and None
|
||||||
if any(f):
|
if any(f):
|
||||||
cls, det, seg = (isinstance(model, x)
|
task = guess_task_from_head(model.yaml["head"][-1][-2])
|
||||||
for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
|
||||||
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
|
|
||||||
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
|
s = "-WARNING ⚠️ not yet supported for YOLOv8 exported models"
|
||||||
task = 'detect' if det else 'segment' if seg else 'classify' if cls else ''
|
|
||||||
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
||||||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||||||
f"\nPredict: yolo task={task} mode=predict model={f[-1]} {s}"
|
f"\nPredict: yolo task={task} mode=predict model={f[-1]} {s}"
|
||||||
@ -337,13 +335,30 @@ class Exporter:
|
|||||||
@try_export
|
@try_export
|
||||||
def _export_coreml(self, prefix=colorstr('CoreML:')):
|
def _export_coreml(self, prefix=colorstr('CoreML:')):
|
||||||
# YOLOv5 CoreML export
|
# YOLOv5 CoreML export
|
||||||
check_requirements('coremltools')
|
check_requirements('coremltools>=6.0')
|
||||||
import coremltools as ct # noqa
|
import coremltools as ct # noqa
|
||||||
|
|
||||||
|
class iOSModel(torch.nn.Module):
|
||||||
|
# Wrap an Ultralytics YOLO model for iOS export
|
||||||
|
def __init__(self, model, im):
|
||||||
|
super().__init__()
|
||||||
|
b, c, h, w = im.shape # batch, channel, height, width
|
||||||
|
self.model = model
|
||||||
|
self.nc = len(model.names) # number of classes
|
||||||
|
if w == h:
|
||||||
|
self.normalize = 1.0 / w # scalar
|
||||||
|
else:
|
||||||
|
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
|
||||||
|
return cls, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|
||||||
|
|
||||||
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||||||
f = self.file.with_suffix('.mlmodel')
|
f = self.file.with_suffix('.mlmodel')
|
||||||
|
|
||||||
ts = torch.jit.trace(self.model, self.im, strict=False) # TorchScript model
|
model = iOSModel(self.model, self.im) if self.args.nms else self.model
|
||||||
|
ts = torch.jit.trace(model, self.im, strict=False) # TorchScript model
|
||||||
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=self.im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
||||||
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
|
bits, mode = (8, 'kmeans_lut') if self.args.int8 else (16, 'linear') if self.args.half else (32, None)
|
||||||
if bits < 32:
|
if bits < 32:
|
||||||
@ -351,6 +366,9 @@ class Exporter:
|
|||||||
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
||||||
else:
|
else:
|
||||||
LOGGER.info(f'{prefix} quantization only supported on macOS, skipping...')
|
LOGGER.info(f'{prefix} quantization only supported on macOS, skipping...')
|
||||||
|
if self.args.nms:
|
||||||
|
ct_model = self._pipeline_coreml(ct_model)
|
||||||
|
|
||||||
ct_model.save(str(f))
|
ct_model.save(str(f))
|
||||||
return f, ct_model
|
return f, ct_model
|
||||||
|
|
||||||
@ -525,8 +543,10 @@ class Exporter:
|
|||||||
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
||||||
for c in (
|
for c in (
|
||||||
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
||||||
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | ' # no comma
|
||||||
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
'sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
||||||
|
'sudo apt-get update',
|
||||||
|
'sudo apt-get install edgetpu-compiler'):
|
||||||
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
||||||
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
||||||
|
|
||||||
@ -597,6 +617,127 @@ class Exporter:
|
|||||||
populator.populate()
|
populator.populate()
|
||||||
tmp_file.unlink()
|
tmp_file.unlink()
|
||||||
|
|
||||||
|
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
|
||||||
|
# YOLOv5 CoreML pipeline
|
||||||
|
import coremltools as ct # noqa
|
||||||
|
|
||||||
|
LOGGER.info(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
|
||||||
|
batch_size, ch, h, w = list(self.im.shape) # BCHW
|
||||||
|
|
||||||
|
# Output shapes
|
||||||
|
spec = model.get_spec()
|
||||||
|
out0, out1 = iter(spec.description.output)
|
||||||
|
if MACOS:
|
||||||
|
from PIL import Image
|
||||||
|
img = Image.new('RGB', (w, h)) # img(192 width, 320 height)
|
||||||
|
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
|
||||||
|
out = model.predict({'image': img})
|
||||||
|
out0_shape = out[out0.name].shape
|
||||||
|
out1_shape = out[out1.name].shape
|
||||||
|
else: # linux and windows can not run model.predict(), get sizes from pytorch output y
|
||||||
|
out0_shape = self.output_shape[1], self.output_shape[2] - 5 # (3780, 80)
|
||||||
|
out1_shape = self.output_shape[1], 4 # (3780, 4)
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
names = self.metadata['names']
|
||||||
|
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
|
||||||
|
na, nc = out0_shape
|
||||||
|
# na, nc = out0.type.multiArrayType.shape # number anchors, classes
|
||||||
|
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check
|
||||||
|
|
||||||
|
# Define output shapes (missing)
|
||||||
|
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
|
||||||
|
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
|
||||||
|
# spec.neuralNetwork.preprocessing[0].featureName = '0'
|
||||||
|
|
||||||
|
# Flexible input shapes
|
||||||
|
# from coremltools.models.neural_network import flexible_shape_utils
|
||||||
|
# s = [] # shapes
|
||||||
|
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
|
||||||
|
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
|
||||||
|
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
|
||||||
|
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
|
||||||
|
# r.add_height_range((192, 640))
|
||||||
|
# r.add_width_range((192, 640))
|
||||||
|
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
|
||||||
|
|
||||||
|
# Print
|
||||||
|
print(spec.description)
|
||||||
|
|
||||||
|
# Model from spec
|
||||||
|
model = ct.models.MLModel(spec)
|
||||||
|
|
||||||
|
# 3. Create NMS protobuf
|
||||||
|
nms_spec = ct.proto.Model_pb2.Model()
|
||||||
|
nms_spec.specificationVersion = 5
|
||||||
|
for i in range(2):
|
||||||
|
decoder_output = model._spec.description.output[i].SerializeToString()
|
||||||
|
nms_spec.description.input.add()
|
||||||
|
nms_spec.description.input[i].ParseFromString(decoder_output)
|
||||||
|
nms_spec.description.output.add()
|
||||||
|
nms_spec.description.output[i].ParseFromString(decoder_output)
|
||||||
|
|
||||||
|
nms_spec.description.output[0].name = 'confidence'
|
||||||
|
nms_spec.description.output[1].name = 'coordinates'
|
||||||
|
|
||||||
|
output_sizes = [nc, 4]
|
||||||
|
for i in range(2):
|
||||||
|
ma_type = nms_spec.description.output[i].type.multiArrayType
|
||||||
|
ma_type.shapeRange.sizeRanges.add()
|
||||||
|
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
|
||||||
|
ma_type.shapeRange.sizeRanges[0].upperBound = -1
|
||||||
|
ma_type.shapeRange.sizeRanges.add()
|
||||||
|
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
|
||||||
|
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
|
||||||
|
del ma_type.shape[:]
|
||||||
|
|
||||||
|
nms = nms_spec.nonMaximumSuppression
|
||||||
|
nms.confidenceInputFeatureName = out0.name # 1x507x80
|
||||||
|
nms.coordinatesInputFeatureName = out1.name # 1x507x4
|
||||||
|
nms.confidenceOutputFeatureName = 'confidence'
|
||||||
|
nms.coordinatesOutputFeatureName = 'coordinates'
|
||||||
|
nms.iouThresholdInputFeatureName = 'iouThreshold'
|
||||||
|
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
|
||||||
|
nms.iouThreshold = 0.45
|
||||||
|
nms.confidenceThreshold = 0.25
|
||||||
|
nms.pickTop.perClass = True
|
||||||
|
nms.stringClassLabels.vector.extend(names.values())
|
||||||
|
nms_model = ct.models.MLModel(nms_spec)
|
||||||
|
|
||||||
|
# 4. Pipeline models together
|
||||||
|
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
|
||||||
|
('iouThreshold', ct.models.datatypes.Double()),
|
||||||
|
('confidenceThreshold', ct.models.datatypes.Double())],
|
||||||
|
output_features=['confidence', 'coordinates'])
|
||||||
|
pipeline.add_model(model)
|
||||||
|
pipeline.add_model(nms_model)
|
||||||
|
|
||||||
|
# Correct datatypes
|
||||||
|
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
|
||||||
|
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
|
||||||
|
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
||||||
|
|
||||||
|
# Update metadata
|
||||||
|
pipeline.spec.specificationVersion = 5
|
||||||
|
pipeline.spec.description.metadata.versionString = f'Ultralytics YOLOv{ultralytics.__version__}'
|
||||||
|
pipeline.spec.description.metadata.shortDescription = f'Ultralytics {self.pretty_name} CoreML model'
|
||||||
|
pipeline.spec.description.metadata.author = 'Ultralytics (https://ultralytics.com)'
|
||||||
|
pipeline.spec.description.metadata.license = 'GPL-3.0 license (https://ultralytics.com/license)'
|
||||||
|
pipeline.spec.description.metadata.userDefined.update({
|
||||||
|
'IoU threshold': str(nms.iouThreshold),
|
||||||
|
'Confidence threshold': str(nms.confidenceThreshold)})
|
||||||
|
|
||||||
|
# Save the model
|
||||||
|
model = ct.models.MLModel(pipeline.spec)
|
||||||
|
model.input_description['image'] = 'Input image'
|
||||||
|
model.input_description['iouThreshold'] = f'(optional) IOU threshold override (default: {nms.iouThreshold})'
|
||||||
|
model.input_description['confidenceThreshold'] = \
|
||||||
|
f'(optional) Confidence threshold override (default: {nms.confidenceThreshold})'
|
||||||
|
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")'
|
||||||
|
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)'
|
||||||
|
LOGGER.info(f'{prefix} pipeline success')
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||||
def export(cfg):
|
def export(cfg):
|
||||||
|
@ -1,5 +1,3 @@
|
|||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ultralytics import yolo # noqa required for python usage
|
from ultralytics import yolo # noqa required for python usage
|
||||||
@ -7,9 +5,9 @@ from ultralytics.nn.tasks import ClassificationModel, DetectionModel, Segmentati
|
|||||||
from ultralytics.yolo.configs import get_config
|
from ultralytics.yolo.configs import get_config
|
||||||
from ultralytics.yolo.engine.exporter import Exporter
|
from ultralytics.yolo.engine.exporter import Exporter
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER
|
||||||
from ultralytics.yolo.utils.checks import check_yaml
|
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
|
||||||
from ultralytics.yolo.utils.files import yaml_load
|
from ultralytics.yolo.utils.files import yaml_load
|
||||||
from ultralytics.yolo.utils.torch_utils import smart_inference_mode
|
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode
|
||||||
|
|
||||||
# map head: [model, trainer, validator, predictor]
|
# map head: [model, trainer, validator, predictor]
|
||||||
MODEL_MAP = {
|
MODEL_MAP = {
|
||||||
@ -63,7 +61,7 @@ class YOLO:
|
|||||||
cfg = check_yaml(cfg) # check YAML
|
cfg = check_yaml(cfg) # check YAML
|
||||||
cfg_dict = yaml_load(cfg) # model dict
|
cfg_dict = yaml_load(cfg) # model dict
|
||||||
obj = cls(init_key=cls.__init_key)
|
obj = cls(init_key=cls.__init_key)
|
||||||
obj.task = obj._guess_task_from_head(cfg_dict["head"][-1][-2])
|
obj.task = guess_task_from_head(cfg_dict["head"][-1][-2])
|
||||||
obj.ModelClass, obj.TrainerClass, obj.ValidatorClass, obj.PredictorClass = obj._guess_ops_from_task(obj.task)
|
obj.ModelClass, obj.TrainerClass, obj.ValidatorClass, obj.PredictorClass = obj._guess_ops_from_task(obj.task)
|
||||||
obj.model = obj.ModelClass(cfg_dict, verbose=verbose) # initialize
|
obj.model = obj.ModelClass(cfg_dict, verbose=verbose) # initialize
|
||||||
obj.cfg = cfg
|
obj.cfg = cfg
|
||||||
@ -132,13 +130,7 @@ class YOLO:
|
|||||||
overrides["mode"] = "predict"
|
overrides["mode"] = "predict"
|
||||||
predictor = self.PredictorClass(overrides=overrides)
|
predictor = self.PredictorClass(overrides=overrides)
|
||||||
|
|
||||||
# check size type
|
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size
|
||||||
sz = predictor.args.imgsz
|
|
||||||
if type(sz) != int: # received listConfig
|
|
||||||
predictor.args.imgsz = [sz[0], sz[0]] if len(sz) == 1 else [sz[0], sz[1]] # expand
|
|
||||||
else:
|
|
||||||
predictor.args.imgsz = [sz, sz]
|
|
||||||
|
|
||||||
predictor.setup(model=self.model, source=source)
|
predictor.setup(model=self.model, source=source)
|
||||||
predictor()
|
predictor()
|
||||||
|
|
||||||
@ -179,7 +171,7 @@ class YOLO:
|
|||||||
args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
|
args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
|
||||||
args.task = self.task
|
args.task = self.task
|
||||||
|
|
||||||
exporter = Exporter(overrides=overrides)
|
exporter = Exporter(overrides=args)
|
||||||
exporter(model=self.model)
|
exporter(model=self.model)
|
||||||
|
|
||||||
def train(self, **kwargs):
|
def train(self, **kwargs):
|
||||||
@ -230,21 +222,6 @@ class YOLO:
|
|||||||
|
|
||||||
self.trainer.train()
|
self.trainer.train()
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _guess_task_from_head(head):
|
|
||||||
task = None
|
|
||||||
if head.lower() in ["classify", "classifier", "cls", "fc"]:
|
|
||||||
task = "classify"
|
|
||||||
if head.lower() in ["detect"]:
|
|
||||||
task = "detect"
|
|
||||||
if head.lower() in ["segment"]:
|
|
||||||
task = "segment"
|
|
||||||
|
|
||||||
if not task:
|
|
||||||
raise SyntaxError("task or model not recognized! Please refer the docs at : ") # TODO: add docs links
|
|
||||||
|
|
||||||
return task
|
|
||||||
|
|
||||||
def to(self, device):
|
def to(self, device):
|
||||||
self.model.to(device)
|
self.model.to(device)
|
||||||
|
|
||||||
|
@ -35,9 +35,9 @@ from ultralytics.yolo.configs import get_config
|
|||||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
|
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadScreenshots, LoadStreams
|
||||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, ops
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, colorstr, ops
|
||||||
from ultralytics.yolo.utils.checks import check_file, check_imshow
|
from ultralytics.yolo.utils.checks import check_file, check_imgsz, check_imshow
|
||||||
from ultralytics.yolo.utils.files import increment_path
|
from ultralytics.yolo.utils.files import increment_path
|
||||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, select_device, smart_inference_mode
|
from ultralytics.yolo.utils.torch_utils import select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
class BasePredictor:
|
class BasePredictor:
|
||||||
@ -90,7 +90,7 @@ class BasePredictor:
|
|||||||
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
|
self.args.half &= device.type != 'cpu' # half precision only supported on CUDA
|
||||||
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half)
|
model = AutoBackend(model, device=device, dnn=self.args.dnn, fp16=self.args.half)
|
||||||
stride, pt = model.stride, model.pt
|
stride, pt = model.stride, model.pt
|
||||||
imgsz = check_imgsz(self.args.imgsz, s=stride) # check image size
|
imgsz = check_imgsz(self.args.imgsz, stride=stride) # check image size
|
||||||
|
|
||||||
# Dataloader
|
# Dataloader
|
||||||
bs = 1 # batch_size
|
bs = 1 # batch_size
|
||||||
|
@ -14,7 +14,7 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf # noqa
|
||||||
from torch.cuda import amp
|
from torch.cuda import amp
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
from torch.optim import lr_scheduler
|
from torch.optim import lr_scheduler
|
||||||
|
@ -2,15 +2,16 @@ import json
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf # noqa
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from ultralytics.nn.autobackend import AutoBackend
|
from ultralytics.nn.autobackend import AutoBackend
|
||||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, RANK, TQDM_BAR_FORMAT
|
||||||
|
from ultralytics.yolo.utils.checks import check_imgsz
|
||||||
from ultralytics.yolo.utils.files import increment_path
|
from ultralytics.yolo.utils.files import increment_path
|
||||||
from ultralytics.yolo.utils.ops import Profile
|
from ultralytics.yolo.utils.ops import Profile
|
||||||
from ultralytics.yolo.utils.torch_utils import check_imgsz, de_parallel, select_device, smart_inference_mode
|
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device, smart_inference_mode
|
||||||
|
|
||||||
|
|
||||||
class BaseValidator:
|
class BaseValidator:
|
||||||
@ -60,7 +61,7 @@ class BaseValidator:
|
|||||||
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half)
|
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half)
|
||||||
self.model = model
|
self.model = model
|
||||||
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
||||||
imgsz = check_imgsz(self.args.imgsz, s=stride)
|
imgsz = check_imgsz(self.args.imgsz, stride=stride)
|
||||||
if engine:
|
if engine:
|
||||||
self.args.batch_size = model.batch_size
|
self.args.batch_size = model.batch_size
|
||||||
else:
|
else:
|
||||||
|
@ -22,16 +22,26 @@ def is_ascii(s=''):
|
|||||||
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
||||||
|
|
||||||
|
|
||||||
def check_imgsz(imgsz, s=32, floor=0):
|
def check_imgsz(imgsz, stride=32, min_dim=1, floor=0):
|
||||||
# Verify image size is a multiple of stride s in each dimension
|
# Verify image size is a multiple of stride s in each dimension
|
||||||
if isinstance(imgsz, int): # integer i.e. img_size=640
|
|
||||||
new_size = max(make_divisible(imgsz, int(s)), floor)
|
stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride)
|
||||||
else: # list i.e. img_size=[640, 480]
|
if isinstance(imgsz, int): # integer i.e. imgsz=640
|
||||||
|
sz = max(make_divisible(imgsz, stride), floor)
|
||||||
|
else: # list i.e. imgsz=[640, 480]
|
||||||
imgsz = list(imgsz) # convert to list if tuple
|
imgsz = list(imgsz) # convert to list if tuple
|
||||||
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
sz = [max(make_divisible(x, stride), floor) for x in imgsz]
|
||||||
if new_size != imgsz:
|
if sz != imgsz:
|
||||||
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {stride}, updating to {sz}')
|
||||||
return new_size
|
|
||||||
|
# Check dims
|
||||||
|
if min_dim == 2:
|
||||||
|
if isinstance(imgsz, int):
|
||||||
|
sz = [sz, sz]
|
||||||
|
elif len(sz) == 1:
|
||||||
|
sz = [sz[0], sz[0]]
|
||||||
|
|
||||||
|
return sz
|
||||||
|
|
||||||
|
|
||||||
def check_version(current="0.0.0", minimum="0.0.0", name="version ", pinned=False, hard=False, verbose=False):
|
def check_version(current="0.0.0", minimum="0.0.0", name="version ", pinned=False, hard=False, verbose=False):
|
||||||
|
@ -185,18 +185,6 @@ def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
|||||||
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||||
|
|
||||||
|
|
||||||
def check_imgsz(imgsz, s=32, floor=0):
|
|
||||||
# Verify image size is a multiple of stride s in each dimension
|
|
||||||
if isinstance(imgsz, int): # integer i.e. imgsz=640
|
|
||||||
new_size = max(make_divisible(imgsz, int(s)), floor)
|
|
||||||
else: # list i.e. imgsz=[640, 480]
|
|
||||||
imgsz = list(imgsz) # convert to list if tuple
|
|
||||||
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
|
||||||
if new_size != imgsz:
|
|
||||||
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
|
||||||
return new_size
|
|
||||||
|
|
||||||
|
|
||||||
def make_divisible(x, divisor):
|
def make_divisible(x, divisor):
|
||||||
# Returns nearest x divisible by divisor
|
# Returns nearest x divisible by divisor
|
||||||
if isinstance(divisor, torch.Tensor):
|
if isinstance(divisor, torch.Tensor):
|
||||||
@ -293,3 +281,18 @@ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_op
|
|||||||
torch.save(x, s or f)
|
torch.save(x, s or f)
|
||||||
mb = os.path.getsize(s or f) / 1E6 # filesize
|
mb = os.path.getsize(s or f) / 1E6 # filesize
|
||||||
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
||||||
|
|
||||||
|
|
||||||
|
def guess_task_from_head(head):
|
||||||
|
task = None
|
||||||
|
if head.lower() in ["classify", "classifier", "cls", "fc"]:
|
||||||
|
task = "classify"
|
||||||
|
if head.lower() in ["detect"]:
|
||||||
|
task = "detect"
|
||||||
|
if head.lower() in ["segment"]:
|
||||||
|
task = "segment"
|
||||||
|
|
||||||
|
if not task:
|
||||||
|
raise SyntaxError("task or model not recognized! Please refer the docs at : ") # TODO: add docs links
|
||||||
|
|
||||||
|
return task
|
||||||
|
@ -3,6 +3,7 @@ import torch
|
|||||||
|
|
||||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG
|
from ultralytics.yolo.utils import DEFAULT_CONFIG
|
||||||
|
from ultralytics.yolo.utils.checks import check_imgsz
|
||||||
from ultralytics.yolo.utils.plotting import Annotator
|
from ultralytics.yolo.utils.plotting import Annotator
|
||||||
|
|
||||||
|
|
||||||
@ -54,11 +55,7 @@ class ClassificationPredictor(BasePredictor):
|
|||||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||||
def predict(cfg):
|
def predict(cfg):
|
||||||
cfg.model = cfg.model or "squeezenet1_0"
|
cfg.model = cfg.model or "squeezenet1_0"
|
||||||
sz = cfg.imgsz
|
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
||||||
if type(sz) != int: # received listConfig
|
|
||||||
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
|
||||||
else:
|
|
||||||
cfg.imgsz = [sz, sz]
|
|
||||||
predictor = ClassificationPredictor(cfg)
|
predictor = ClassificationPredictor(cfg)
|
||||||
predictor()
|
predictor()
|
||||||
|
|
||||||
|
@ -3,6 +3,7 @@ import torch
|
|||||||
|
|
||||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, ops
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, ops
|
||||||
|
from ultralytics.yolo.utils.checks import check_imgsz
|
||||||
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
|
||||||
|
|
||||||
|
|
||||||
@ -83,11 +84,7 @@ class DetectionPredictor(BasePredictor):
|
|||||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||||
def predict(cfg):
|
def predict(cfg):
|
||||||
cfg.model = cfg.model or "n.pt"
|
cfg.model = cfg.model or "n.pt"
|
||||||
sz = cfg.imgsz
|
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
||||||
if type(sz) != int: # received listConfig
|
|
||||||
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
|
||||||
else:
|
|
||||||
cfg.imgsz = [sz, sz]
|
|
||||||
predictor = DetectionPredictor(cfg)
|
predictor = DetectionPredictor(cfg)
|
||||||
predictor()
|
predictor()
|
||||||
|
|
||||||
|
@ -2,6 +2,7 @@ import hydra
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, ops
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, ops
|
||||||
|
from ultralytics.yolo.utils.checks import check_imgsz
|
||||||
from ultralytics.yolo.utils.plotting import colors, save_one_box
|
from ultralytics.yolo.utils.plotting import colors, save_one_box
|
||||||
|
|
||||||
from ..detect.predict import DetectionPredictor
|
from ..detect.predict import DetectionPredictor
|
||||||
@ -96,11 +97,7 @@ class SegmentationPredictor(DetectionPredictor):
|
|||||||
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
||||||
def predict(cfg):
|
def predict(cfg):
|
||||||
cfg.model = cfg.model or "n.pt"
|
cfg.model = cfg.model or "n.pt"
|
||||||
sz = cfg.imgsz
|
cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # check image size
|
||||||
if type(sz) != int: # received listConfig
|
|
||||||
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
|
||||||
else:
|
|
||||||
cfg.imgsz = [sz, sz]
|
|
||||||
predictor = SegmentationPredictor(cfg)
|
predictor = SegmentationPredictor(cfg)
|
||||||
predictor()
|
predictor()
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user