mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Improved CLI error reporting for users (#458)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
db26ccba94
commit
cc3c774bde
35
README.md
35
README.md
@ -56,11 +56,17 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
|
|||||||
|
|
||||||
<div align="center">
|
<div align="center">
|
||||||
|
|
||||||
[Ultralytics Live Session 3](https://youtu.be/IPcpYO5ITa8) ✨ is here! Join us on January 24th at 18 CET as we dive into the latest advancements in YOLOv8, and demonstrate how to use this cutting-edge, SOTA model to improve your object detection, instance segmentation, and image classification projects. See firsthand how YOLOv8's speed, accuracy, and ease of use make it a top choice for professionals and researchers alike.
|
[Ultralytics Live Session 3](https://youtu.be/IPcpYO5ITa8) ✨ is here! Join us on January 24th at 18 CET as we dive into
|
||||||
|
the latest advancements in YOLOv8, and demonstrate how to use this cutting-edge, SOTA model to improve your object
|
||||||
|
detection, instance segmentation, and image classification projects. See firsthand how YOLOv8's speed, accuracy, and
|
||||||
|
ease of use make it a top choice for professionals and researchers alike.
|
||||||
|
|
||||||
In addition to learning about the exciting new features and improvements of Ultralytics YOLOv8, you will also have the opportunity to ask questions and interact with our team during the live Q&A session. We encourage you to come prepared with any questions you may have.
|
In addition to learning about the exciting new features and improvements of Ultralytics YOLOv8, you will also have the
|
||||||
|
opportunity to ask questions and interact with our team during the live Q&A session. We encourage you to come prepared
|
||||||
|
with any questions you may have.
|
||||||
|
|
||||||
To join the webinar, visit our YouTube [Channel](https://www.youtube.com/@Ultralytics/streams) and turn on your notifications!
|
To join the webinar, visit our YouTube [Channel](https://www.youtube.com/@Ultralytics/streams) and turn on your
|
||||||
|
notifications!
|
||||||
|
|
||||||
<a align="center" href="https://youtu.be/IPcpYO5ITa8" target="_blank">
|
<a align="center" href="https://youtu.be/IPcpYO5ITa8" target="_blank">
|
||||||
<img width="80%" src="https://user-images.githubusercontent.com/107626595/212887899-e94b006c-5192-40fa-8b24-7b5428e065e8.png"></a>
|
<img width="80%" src="https://user-images.githubusercontent.com/107626595/212887899-e94b006c-5192-40fa-8b24-7b5428e065e8.png"></a>
|
||||||
@ -68,8 +74,8 @@ To join the webinar, visit our YouTube [Channel](https://www.youtube.com/@Ultral
|
|||||||
|
|
||||||
## <div align="center">Documentation</div>
|
## <div align="center">Documentation</div>
|
||||||
|
|
||||||
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full
|
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for
|
||||||
documentation on training, validation, prediction and deployment.
|
full documentation on training, validation, prediction and deployment.
|
||||||
|
|
||||||
<details open>
|
<details open>
|
||||||
<summary>Install</summary>
|
<summary>Install</summary>
|
||||||
@ -88,22 +94,18 @@ pip install ultralytics
|
|||||||
<details open>
|
<details open>
|
||||||
<summary>Usage</summary>
|
<summary>Usage</summary>
|
||||||
|
|
||||||
|
#### CLI
|
||||||
|
|
||||||
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
|
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
|
yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"
|
||||||
```
|
```
|
||||||
|
|
||||||
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list
|
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8
|
||||||
of available `yolo` [arguments](https://docs.ultralytics.com/config/) in the
|
[CLI Docs](https://docs.ultralytics.com/cli) for examples.
|
||||||
YOLOv8 [Docs](https://docs.ultralytics.com).
|
|
||||||
|
|
||||||
```bash
|
#### Python
|
||||||
yolo task=detect mode=train model=yolov8n.pt args...
|
|
||||||
classify predict yolov8n-cls.yaml args...
|
|
||||||
segment val yolov8n-seg.yaml args...
|
|
||||||
export yolov8n.pt format=onnx args...
|
|
||||||
```
|
|
||||||
|
|
||||||
YOLOv8 may also be used directly in a Python environment, and accepts the
|
YOLOv8 may also be used directly in a Python environment, and accepts the
|
||||||
same [arguments](https://docs.ultralytics.com/config/) as in the CLI example above:
|
same [arguments](https://docs.ultralytics.com/config/) as in the CLI example above:
|
||||||
@ -123,9 +125,10 @@ success = model.export(format="onnx") # export the model to ONNX format
|
|||||||
```
|
```
|
||||||
|
|
||||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
|
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
|
||||||
Ultralytics [release](https://github.com/ultralytics/assets/releases).
|
Ultralytics [release](https://github.com/ultralytics/assets/releases). See
|
||||||
|
YOLOv8 [Python Docs](https://docs.ultralytics.com/python) for more examples.
|
||||||
|
|
||||||
### Known Issues / TODOs
|
#### Known Issues / TODOs
|
||||||
|
|
||||||
We are still working on several parts of YOLOv8! We aim to have these completed soon to bring the YOLOv8 feature set up
|
We are still working on several parts of YOLOv8! We aim to have these completed soon to bring the YOLOv8 feature set up
|
||||||
to par with YOLOv5, including export and inference to all the same formats. We are also writing a YOLOv8 paper which we
|
to par with YOLOv5, including export and inference to all the same formats. We are also writing a YOLOv8 paper which we
|
||||||
|
215
docs/cli.md
215
docs/cli.md
@ -1,85 +1,196 @@
|
|||||||
If you want to train, validate or run inference on models and don't need to make any modifications to the code, using
|
The YOLO Command Line Interface (CLI) is the easiest way to get started training, validating, predicting and exporting
|
||||||
YOLO command line interface is the easiest way to get started.
|
YOLOv8 models.
|
||||||
|
|
||||||
!!! tip "Syntax"
|
The `yolo` command is used for all actions:
|
||||||
|
|
||||||
```bash
|
!!! example ""
|
||||||
yolo task=detect mode=train model=yolov8n.yaml args...
|
|
||||||
classify predict yolov8n-cls.yaml args...
|
|
||||||
segment val yolov8n-seg.yaml args...
|
|
||||||
export yolov8n.pt format=onnx args...
|
|
||||||
```
|
|
||||||
|
|
||||||
The default arguments can be overridden directly by passing custom `arg=val` covered in the next section. You can run
|
=== "CLI"
|
||||||
any supported task by setting `task` and `mode` in CLI.
|
|
||||||
=== "Training"
|
|
||||||
|
|
||||||
| | `task` | snippet |
|
```bash
|
||||||
|------------------|------------|------------------------------------------------------------|
|
yolo TASK MODE ARGS
|
||||||
| Detection | `detect` | <pre><code>yolo detect train </code></pre> |
|
```
|
||||||
| Instance Segment | `segment` | <pre><code>yolo segment train </code></pre> |
|
|
||||||
| Classification | `classify` | <pre><code>yolo classify train </code></pre> |
|
|
||||||
|
|
||||||
=== "Prediction"
|
Where:
|
||||||
|
|
||||||
| | `task` | snippet |
|
- `TASK` (optional) is one of `[detect, segment, classify]`. If it is not passed explicitly YOLOv8 will try to guess
|
||||||
|------------------|------------|--------------------------------------------------------------|
|
the `TASK` from the model type.
|
||||||
| Detection | `detect` | <pre><code>yolo detect predict </code></pre> |
|
- `MODE` (required) is one of `[train, val, predict, export]`
|
||||||
| Instance Segment | `segment` | <pre><code>yolo segment predict </code></pre> |
|
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults.
|
||||||
| Classification | `classify` | <pre><code>yolo classify predict </code></pre> |
|
For a full list of available `ARGS` see the [Configuration](config.md) page.
|
||||||
|
|
||||||
=== "Validation"
|
|
||||||
|
|
||||||
| | `task` | snippet |
|
|
||||||
|------------------|------------|-----------------------------------------------------------|
|
|
||||||
| Detection | `detect` | <pre><code>yolo detect val </code></pre> |
|
|
||||||
| Instance Segment | `segment` | <pre><code>yolo segment val </code></pre> |
|
|
||||||
| Classification | `classify` | <pre><code>yolo classify val </code></pre> |
|
|
||||||
|
|
||||||
!!! note ""
|
!!! note ""
|
||||||
|
|
||||||
<b>Note:</b> The arguments don't require `'--'` prefix. These are reserved for special commands covered later
|
<b>Note:</b> Arguments MUST be passed as `arg=val` with an equals sign and a space between `arg=val` pairs
|
||||||
|
|
||||||
|
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
|
||||||
|
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌
|
||||||
|
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌
|
||||||
|
|
||||||
|
## Train
|
||||||
|
|
||||||
|
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
|
||||||
|
the [Configuration](config.md) page.
|
||||||
|
|
||||||
|
!!! example ""
|
||||||
|
|
||||||
|
=== "CLI"
|
||||||
|
|
||||||
|
```bash
|
||||||
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
# Load a model
|
||||||
|
model = YOLO("yolov8n.yaml") # build a new model from scratch
|
||||||
|
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||||
|
|
||||||
|
# Train the model
|
||||||
|
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Val
|
||||||
|
|
||||||
|
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's
|
||||||
|
training `data` and arguments as model attributes.
|
||||||
|
|
||||||
|
!!! example ""
|
||||||
|
|
||||||
|
=== "CLI"
|
||||||
|
|
||||||
|
```bash
|
||||||
|
yolo detect val model=yolov8n.pt # val official model
|
||||||
|
yolo detect val model=path/to/best.pt # val custom model
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
# Load a model
|
||||||
|
model = YOLO("yolov8n.pt") # load an official model
|
||||||
|
model = YOLO("path/to/best.pt") # load a custom model
|
||||||
|
|
||||||
|
# Validate the model
|
||||||
|
results = model.val() # no arguments needed, dataset and settings remembered
|
||||||
|
```
|
||||||
|
|
||||||
|
## Predict
|
||||||
|
|
||||||
|
Use a trained YOLOv8n model to run predictions on images.
|
||||||
|
|
||||||
|
!!! example ""
|
||||||
|
|
||||||
|
=== "CLI"
|
||||||
|
|
||||||
|
```bash
|
||||||
|
yolo detect predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" # predict with official model
|
||||||
|
yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg" # predict with custom model
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
# Load a model
|
||||||
|
model = YOLO("yolov8n.pt") # load an official model
|
||||||
|
model = YOLO("path/to/best.pt") # load a custom model
|
||||||
|
|
||||||
|
# Predict with the model
|
||||||
|
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
|
||||||
|
```
|
||||||
|
|
||||||
|
## Export
|
||||||
|
|
||||||
|
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||||
|
|
||||||
|
!!! example ""
|
||||||
|
|
||||||
|
=== "CLI"
|
||||||
|
|
||||||
|
```bash
|
||||||
|
yolo export model=yolov8n.pt format=onnx # export official model
|
||||||
|
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
# Load a model
|
||||||
|
model = YOLO("yolov8n.pt") # load an official model
|
||||||
|
model = YOLO("path/to/best.pt") # load a custom trained
|
||||||
|
|
||||||
|
# Export the model
|
||||||
|
model.export(format="onnx")
|
||||||
|
```
|
||||||
|
|
||||||
|
Available YOLOv8 export formats include:
|
||||||
|
|
||||||
|
| Format | `format=` | Model |
|
||||||
|
|----------------------------------------------------------------------------|--------------------|---------------------------|
|
||||||
|
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` |
|
||||||
|
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` |
|
||||||
|
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` |
|
||||||
|
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` |
|
||||||
|
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` |
|
||||||
|
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` |
|
||||||
|
| [TensorFlow SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` |
|
||||||
|
| [TensorFlow GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` |
|
||||||
|
| [TensorFlow Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` |
|
||||||
|
| [TensorFlow Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` |
|
||||||
|
| [TensorFlow.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` |
|
||||||
|
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` |
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## Overriding default config arguments
|
## Overriding default arguments
|
||||||
|
|
||||||
Default arguments can be overriden by simply passing them as arguments in the CLI.
|
Default arguments can be overriden by simply passing them as arguments in the CLI in `arg=value` pairs.
|
||||||
|
|
||||||
!!! tip ""
|
!!! tip ""
|
||||||
|
|
||||||
=== "Syntax"
|
=== "Example 1"
|
||||||
|
Train a detection model for `10 epochs` with `learning_rate` of `0.01`
|
||||||
```bash
|
```bash
|
||||||
yolo task mode arg=val...
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Example"
|
=== "Example 2"
|
||||||
Perform detection training for `10 epochs` with `learning_rate` of `0.01`
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
||||||
```bash
|
```bash
|
||||||
yolo detect train epochs=10 lr0=0.01
|
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Example 3"
|
||||||
|
Validate a pretrained detection model at batch-size 1 and image size 640:
|
||||||
|
```bash
|
||||||
|
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
||||||
```
|
```
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## Overriding default config file
|
## Overriding default config file
|
||||||
|
|
||||||
You can override config file entirely by passing a new file. You can create a copy of default config file in your
|
You can override the `default.yaml` config file entirely by passing a new file with the `cfg` arguments,
|
||||||
current working dir as follows:
|
i.e. `cfg=custom.yaml`.
|
||||||
|
|
||||||
```bash
|
To do this first create a copy of `default.yaml` in your current working dir with the `yolo copy-config` command.
|
||||||
yolo copy-config
|
|
||||||
```
|
|
||||||
|
|
||||||
You can then use `cfg=default_copy.yaml` command to pass the new config file along with any addition args:
|
This will create `default_copy.yaml`, which you can then pass as `cfg=default_copy.yaml` along with any additional args,
|
||||||
|
like `imgsz=320` in this example:
|
||||||
|
|
||||||
```bash
|
!!! example ""
|
||||||
yolo cfg=default_copy.yaml args...
|
|
||||||
```
|
|
||||||
|
|
||||||
??? example
|
=== "CLI"
|
||||||
|
|
||||||
=== "Command"
|
|
||||||
```bash
|
```bash
|
||||||
yolo copy-config
|
yolo copy-config
|
||||||
yolo cfg=default_copy.yaml args...
|
yolo cfg=default_copy.yaml imgsz=320
|
||||||
```
|
```
|
@ -1,9 +1,9 @@
|
|||||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
|
||||||
__version__ = "8.0.7"
|
__version__ = "8.0.8"
|
||||||
|
|
||||||
from ultralytics.hub import checks
|
|
||||||
from ultralytics.yolo.engine.model import YOLO
|
from ultralytics.yolo.engine.model import YOLO
|
||||||
from ultralytics.yolo.utils import ops
|
from ultralytics.yolo.utils import ops
|
||||||
|
from ultralytics.yolo.utils.checks import check_yolo as checks
|
||||||
|
|
||||||
__all__ = ["__version__", "YOLO", "hub", "checks"] # allow simpler import
|
__all__ = ["__version__", "YOLO", "hub", "checks"] # allow simpler import
|
||||||
|
@ -1,38 +1,14 @@
|
|||||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||||
|
|
||||||
import os
|
|
||||||
import shutil
|
|
||||||
|
|
||||||
import psutil
|
|
||||||
import requests
|
import requests
|
||||||
from IPython import display # to display images and clear console output
|
|
||||||
|
|
||||||
from ultralytics.hub.auth import Auth
|
from ultralytics.hub.auth import Auth
|
||||||
from ultralytics.hub.session import HubTrainingSession
|
from ultralytics.hub.session import HubTrainingSession
|
||||||
from ultralytics.hub.utils import PREFIX, split_key
|
from ultralytics.hub.utils import PREFIX, split_key
|
||||||
from ultralytics.yolo.utils import LOGGER, emojis, is_colab
|
from ultralytics.yolo.utils import LOGGER, emojis
|
||||||
from ultralytics.yolo.utils.torch_utils import select_device
|
|
||||||
from ultralytics.yolo.v8.detect import DetectionTrainer
|
from ultralytics.yolo.v8.detect import DetectionTrainer
|
||||||
|
|
||||||
|
|
||||||
def checks(verbose=True):
|
|
||||||
if is_colab():
|
|
||||||
shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
|
|
||||||
|
|
||||||
if verbose:
|
|
||||||
# System info
|
|
||||||
gib = 1 << 30 # bytes per GiB
|
|
||||||
ram = psutil.virtual_memory().total
|
|
||||||
total, used, free = shutil.disk_usage("/")
|
|
||||||
display.clear_output()
|
|
||||||
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
|
|
||||||
else:
|
|
||||||
s = ''
|
|
||||||
|
|
||||||
select_device(newline=False)
|
|
||||||
LOGGER.info(f'Setup complete ✅ {s}')
|
|
||||||
|
|
||||||
|
|
||||||
def start(key=''):
|
def start(key=''):
|
||||||
# Start training models with Ultralytics HUB. Usage: from src.ultralytics import start; start('API_KEY')
|
# Start training models with Ultralytics HUB. Usage: from src.ultralytics import start; start('API_KEY')
|
||||||
def request_api_key(attempts=0):
|
def request_api_key(attempts=0):
|
||||||
|
@ -4,13 +4,53 @@ import argparse
|
|||||||
import shutil
|
import shutil
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from hydra import compose, initialize
|
from ultralytics import __version__, yolo
|
||||||
|
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, PREFIX, checks, print_settings, yaml_load
|
||||||
from ultralytics import hub, yolo
|
|
||||||
from ultralytics.yolo.utils import DEFAULT_CONFIG, HELP_MSG, LOGGER, PREFIX, print_settings, yaml_load
|
|
||||||
|
|
||||||
DIR = Path(__file__).parent
|
DIR = Path(__file__).parent
|
||||||
|
|
||||||
|
CLI_HELP_MSG = \
|
||||||
|
"""
|
||||||
|
YOLOv8 CLI Usage examples:
|
||||||
|
|
||||||
|
1. Install the ultralytics package:
|
||||||
|
|
||||||
|
pip install ultralytics
|
||||||
|
|
||||||
|
2. Train, Val, Predict and Export using 'yolo' commands of the form:
|
||||||
|
|
||||||
|
yolo TASK MODE ARGS
|
||||||
|
|
||||||
|
Where TASK (optional) is one of [detect, segment, classify]
|
||||||
|
MODE (required) is one of [train, val, predict, export]
|
||||||
|
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
||||||
|
For a full list of available ARGS see https://docs.ultralytics.com/config.
|
||||||
|
|
||||||
|
Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
||||||
|
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||||
|
|
||||||
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
||||||
|
yolo segment predict model=yolov8n-seg.pt source=https://youtu.be/Zgi9g1ksQHc imgsz=320
|
||||||
|
|
||||||
|
Validate a pretrained detection model at batch-size 1 and image size 640:
|
||||||
|
yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
||||||
|
|
||||||
|
Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
||||||
|
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
|
||||||
|
|
||||||
|
3. Run special commands:
|
||||||
|
|
||||||
|
yolo help
|
||||||
|
yolo checks
|
||||||
|
yolo version
|
||||||
|
yolo settings
|
||||||
|
yolo copy-config
|
||||||
|
|
||||||
|
Docs: https://docs.ultralytics.com/cli
|
||||||
|
Community: https://community.ultralytics.com
|
||||||
|
GitHub: https://github.com/ultralytics/ultralytics
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
def cli(cfg):
|
def cli(cfg):
|
||||||
"""
|
"""
|
||||||
@ -28,20 +68,16 @@ def cli(cfg):
|
|||||||
task, mode = cfg.task.lower(), cfg.mode.lower()
|
task, mode = cfg.task.lower(), cfg.mode.lower()
|
||||||
|
|
||||||
# Mapping from task to module
|
# Mapping from task to module
|
||||||
task_module_map = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}
|
tasks = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}
|
||||||
module = task_module_map.get(task)
|
module = tasks.get(task)
|
||||||
if not module:
|
if not module:
|
||||||
raise SyntaxError(f"task not recognized. Choices are {', '.join(task_module_map.keys())}")
|
raise SyntaxError(f"yolo task={task} is invalid. Valid tasks are: {', '.join(tasks.keys())}\n{CLI_HELP_MSG}")
|
||||||
|
|
||||||
# Mapping from mode to function
|
# Mapping from mode to function
|
||||||
mode_func_map = {
|
modes = {"train": module.train, "val": module.val, "predict": module.predict, "export": yolo.engine.exporter.export}
|
||||||
"train": module.train,
|
func = modes.get(mode)
|
||||||
"val": module.val,
|
|
||||||
"predict": module.predict,
|
|
||||||
"export": yolo.engine.exporter.export}
|
|
||||||
func = mode_func_map.get(mode)
|
|
||||||
if not func:
|
if not func:
|
||||||
raise SyntaxError(f"mode not recognized. Choices are {', '.join(mode_func_map.keys())}")
|
raise SyntaxError(f"yolo mode={mode} is invalid. Valid modes are: {', '.join(modes.keys())}\n{CLI_HELP_MSG}")
|
||||||
|
|
||||||
func(cfg)
|
func(cfg)
|
||||||
|
|
||||||
@ -68,8 +104,9 @@ def entrypoint():
|
|||||||
tasks = 'detect', 'segment', 'classify'
|
tasks = 'detect', 'segment', 'classify'
|
||||||
modes = 'train', 'val', 'predict', 'export'
|
modes = 'train', 'val', 'predict', 'export'
|
||||||
special_modes = {
|
special_modes = {
|
||||||
'checks': hub.checks,
|
'help': lambda: LOGGER.info(CLI_HELP_MSG),
|
||||||
'help': lambda: LOGGER.info(HELP_MSG),
|
'checks': checks.check_yolo,
|
||||||
|
'version': lambda: LOGGER.info(__version__),
|
||||||
'settings': print_settings,
|
'settings': print_settings,
|
||||||
'copy-config': copy_default_config}
|
'copy-config': copy_default_config}
|
||||||
|
|
||||||
@ -87,8 +124,17 @@ def entrypoint():
|
|||||||
return
|
return
|
||||||
elif a in defaults and defaults[a] is False:
|
elif a in defaults and defaults[a] is False:
|
||||||
overrides.append(f'{a}=True') # auto-True for default False args, i.e. yolo show
|
overrides.append(f'{a}=True') # auto-True for default False args, i.e. yolo show
|
||||||
|
elif a in defaults:
|
||||||
|
raise SyntaxError(f"'{a}' is a valid YOLO argument but is missing an '=' sign to set its value, "
|
||||||
|
f"i.e. try '{a}={defaults[a]}'"
|
||||||
|
f"\n{CLI_HELP_MSG}")
|
||||||
else:
|
else:
|
||||||
raise (SyntaxError(f"'{a}' is not a valid yolo argument\n{HELP_MSG}"))
|
raise SyntaxError(
|
||||||
|
f"'{a}' is not a valid YOLO argument. For a full list of valid arguments see "
|
||||||
|
f"https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml"
|
||||||
|
f"\n{CLI_HELP_MSG}")
|
||||||
|
|
||||||
|
from hydra import compose, initialize
|
||||||
|
|
||||||
with initialize(version_base=None, config_path=str(DEFAULT_CONFIG.parent.relative_to(DIR)), job_name="YOLO"):
|
with initialize(version_base=None, config_path=str(DEFAULT_CONFIG.parent.relative_to(DIR)), job_name="YOLO"):
|
||||||
cfg = compose(config_name=DEFAULT_CONFIG.name, overrides=overrides)
|
cfg = compose(config_name=DEFAULT_CONFIG.name, overrides=overrides)
|
||||||
|
@ -3,7 +3,9 @@
|
|||||||
import glob
|
import glob
|
||||||
import inspect
|
import inspect
|
||||||
import math
|
import math
|
||||||
|
import os
|
||||||
import platform
|
import platform
|
||||||
|
import shutil
|
||||||
import urllib
|
import urllib
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from subprocess import check_output
|
from subprocess import check_output
|
||||||
@ -12,10 +14,12 @@ from typing import Optional
|
|||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pkg_resources as pkg
|
import pkg_resources as pkg
|
||||||
|
import psutil
|
||||||
import torch
|
import torch
|
||||||
|
from IPython import display
|
||||||
|
|
||||||
from ultralytics.yolo.utils import (AUTOINSTALL, FONT, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, emojis,
|
from ultralytics.yolo.utils import (AUTOINSTALL, FONT, LOGGER, ROOT, USER_CONFIG_DIR, TryExcept, colorstr, emojis,
|
||||||
is_docker, is_jupyter_notebook)
|
is_colab, is_docker, is_jupyter_notebook)
|
||||||
|
|
||||||
|
|
||||||
def is_ascii(s) -> bool:
|
def is_ascii(s) -> bool:
|
||||||
@ -245,6 +249,26 @@ def check_imshow(warn=False):
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def check_yolo(verbose=True):
|
||||||
|
from ultralytics.yolo.utils.torch_utils import select_device
|
||||||
|
|
||||||
|
if is_colab():
|
||||||
|
shutil.rmtree('sample_data', ignore_errors=True) # remove colab /sample_data directory
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
# System info
|
||||||
|
gib = 1 << 30 # bytes per GiB
|
||||||
|
ram = psutil.virtual_memory().total
|
||||||
|
total, used, free = shutil.disk_usage("/")
|
||||||
|
display.clear_output()
|
||||||
|
s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
|
||||||
|
else:
|
||||||
|
s = ''
|
||||||
|
|
||||||
|
select_device(newline=False)
|
||||||
|
LOGGER.info(f'Setup complete ✅ {s}')
|
||||||
|
|
||||||
|
|
||||||
def git_describe(path=ROOT): # path must be a directory
|
def git_describe(path=ROOT): # path must be a directory
|
||||||
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
||||||
try:
|
try:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user