diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml
index 3e8f07ef..e3542660 100644
--- a/.github/workflows/ci.yaml
+++ b/.github/workflows/ci.yaml
@@ -225,7 +225,7 @@ jobs:
run:
shell: bash -el {0}
steps:
- - uses: conda-incubator/setup-miniconda@v2
+ - uses: conda-incubator/setup-miniconda@v3
with:
python-version: ${{ matrix.python-version }}
mamba-version: "*"
diff --git a/README.md b/README.md
index 4914bef6..f14a0c31 100644
--- a/README.md
+++ b/README.md
@@ -12,6 +12,7 @@
+
diff --git a/README.zh-CN.md b/README.zh-CN.md
index 7f25522d..cc581c98 100644
--- a/README.zh-CN.md
+++ b/README.zh-CN.md
@@ -12,6 +12,7 @@
+
diff --git a/docs/ar/index.md b/docs/ar/index.md
index 211f6673..ab95a6ab 100644
--- a/docs/ar/index.md
+++ b/docs/ar/index.md
@@ -28,6 +28,7 @@ keywords: Ultralytics، YOLOv8، كشف الكائنات، تجزئة الصور
+
diff --git a/docs/de/index.md b/docs/de/index.md
index 1216d92e..a008082e 100644
--- a/docs/de/index.md
+++ b/docs/de/index.md
@@ -28,6 +28,7 @@ keywords: Ultralytics, YOLOv8, Objekterkennung, Bildsegmentierung, maschinelles
+
diff --git a/docs/en/guides/isolating-segmentation-objects.md b/docs/en/guides/isolating-segmentation-objects.md
index 676b11f5..a0436f43 100644
--- a/docs/en/guides/isolating-segmentation-objects.md
+++ b/docs/en/guides/isolating-segmentation-objects.md
@@ -24,7 +24,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
from ultralytics import YOLO
```
- ???+ tip "Ultralytics Install"
+ ???+ tip "Ultralytics Install"
See the Ultralytics [Quickstart](../quickstart.md/#install-ultralytics) Installation section for a quick walkthrough on installing the required libraries.
@@ -42,7 +42,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
result = model.predict()
```
- ??? question "No Prediction Arguments?"
+ ??? question "No Prediction Arguments?"
Without specifying a source, the example images from the library will be used:
@@ -53,7 +53,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
This is helpful for rapid testing with the `predict()` method.
- For additional information about Segmentation Models, visit the [Segment Task](../tasks/segment.md#models) page. To learn more about `predict()` method, see [Predict Mode](../modes/predict.md) section of the Documentation.
+ For additional information about Segmentation Models, visit the [Segment Task](../tasks/segment.md#models) page. To learn more about `predict()` method, see [Predict Mode](../modes/predict.md) section of the Documentation.
---
@@ -75,7 +75,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
1. To learn more about working with detection results, see [Boxes Section for Predict Mode](../modes/predict.md#boxes).
2. To learn more about `predict()` results see [Working with Results for Predict Mode](../modes/predict.md#working-with-results)
- ??? info "For-Loop"
+ ??? info "For-Loop"
A single image will only iterate the first loop once. A single image with only a single detection will iterate each loop _only_ once.
@@ -83,7 +83,8 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
4. Start with generating a binary mask from the source image and then draw a filled contour onto the mask. This will allow the object to be isolated from the other parts of the image. An example from `bus.jpg` for one of the detected `person` class objects is shown on the right.
- { width="240", align="right" }
+ { width="240", align="right" }
+
``` { .py .annotate }
# Create binary mask
b_mask = np.zeros(img.shape[:2], np.uint8)
@@ -146,9 +147,9 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
5. Next the there are 2 options for how to move forward with the image from this point and a subsequent option for each.
- ### Object Isolation Options
+ ### Object Isolation Options
- !!! Example ""
+ !!! example ""
=== "Black Background Pixels"
@@ -251,7 +252,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
- Finally the image region for the bounding box is cropped using index slicing, where the bounds are set using the `[ymin:ymax, xmin:xmax]` coordinates of the detection bounding box.
- ??? question "What if I want the cropped object **including** the background?"
+ ??? question "What if I want the cropped object **including** the background?"
This is a built in feature for the Ultralytics library. See the `save_crop` argument for [Predict Mode Inference Arguments](../modes/predict.md/#inference-arguments) for details.
@@ -261,7 +262,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
- **NOTE:** this step is optional and can be skipped if not required for your specific use case.
- ??? example "Example Final Step"
+ ??? example "Example Final Step"
```py
# Save isolated object to file
diff --git a/docs/en/index.md b/docs/en/index.md
index c69388b9..4f4b0d63 100644
--- a/docs/en/index.md
+++ b/docs/en/index.md
@@ -28,6 +28,7 @@ keywords: Ultralytics, YOLOv8, object detection, image segmentation, machine lea
+
diff --git a/docs/en/models/yolov8.md b/docs/en/models/yolov8.md
index 027b3996..fd701302 100644
--- a/docs/en/models/yolov8.md
+++ b/docs/en/models/yolov8.md
@@ -12,6 +12,17 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,

+
+
+
+
+ Watch: Ultralytics YOLOv8 Model Overview
+