mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
ultralytics 8.0.14
Hydra removal fixes and cleanup (#542)
Co-authored-by: ayush chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Kamlesh Kumar <patelkamleshpatel364@gmail.com>
This commit is contained in:
parent
cc3be0e223
commit
d9a0fba251
214
docs/cfg.md
Normal file
214
docs/cfg.md
Normal file
@ -0,0 +1,214 @@
|
||||
YOLO settings and hyperparameters play a critical role in the model's performance, speed, and accuracy. These settings
|
||||
and hyperparameters can affect the model's behavior at various stages of the model development process, including
|
||||
training, validation, and prediction.
|
||||
|
||||
Properly setting and tuning these parameters can have a significant impact on the model's ability to learn effectively
|
||||
from the training data and generalize to new data. For example, choosing an appropriate learning rate, batch size, and
|
||||
optimization algorithm can greatly affect the model's convergence speed and accuracy. Similarly, setting the correct
|
||||
confidence threshold and non-maximum suppression (NMS) threshold can affect the model's performance on detection tasks.
|
||||
|
||||
It is important to carefully consider and experiment with these settings and hyperparameters to achieve the best
|
||||
possible performance for a given task. This can involve trial and error, as well as using techniques such as
|
||||
hyperparameter optimization to search for the optimal set of parameters.
|
||||
|
||||
In summary, YOLO settings and hyperparameters are a key factor in the success of a YOLO model, and it is important to
|
||||
pay careful attention to them to achieve the desired results.
|
||||
|
||||
### Setting the operation type
|
||||
|
||||
YOLO models can be used for a variety of tasks, including detection, segmentation, and classification. These tasks
|
||||
differ in the type of output they produce and the specific problem they are designed to solve.
|
||||
|
||||
- Detection: Detection tasks involve identifying and localizing objects or regions of interest in an image or video.
|
||||
YOLO models can be used for object detection tasks by predicting the bounding boxes and class labels of objects in an
|
||||
image.
|
||||
- Segmentation: Segmentation tasks involve dividing an image or video into regions or pixels that correspond to
|
||||
different objects or classes. YOLO models can be used for image segmentation tasks by predicting a mask or label for
|
||||
each pixel in an image.
|
||||
- Classification: Classification tasks involve assigning a class label to an input, such as an image or text. YOLO
|
||||
models can be used for image classification tasks by predicting the class label of an input image.
|
||||
|
||||
YOLO models can be used in different modes depending on the specific problem you are trying to solve. These modes
|
||||
include train, val, and predict.
|
||||
|
||||
- Train: The train mode is used to train the model on a dataset. This mode is typically used during the development and
|
||||
testing phase of a model.
|
||||
- Val: The val mode is used to evaluate the model's performance on a validation dataset. This mode is typically used to
|
||||
tune the model's hyperparameters and detect overfitting.
|
||||
- Predict: The predict mode is used to make predictions with the model on new data. This mode is typically used in
|
||||
production or when deploying the model to users.
|
||||
|
||||
| Key | Value | Description |
|
||||
|--------|----------|-----------------------------------------------------------------------------------------------|
|
||||
| task | 'detect' | inference task, i.e. detect, segment, or classify |
|
||||
| mode | 'train' | YOLO mode, i.e. train, val, predict, or export |
|
||||
| resume | False | resume training from last checkpoint or custom checkpoint if passed as resume=path/to/best.pt |
|
||||
| model | null | path to model file, i.e. yolov8n.pt, yolov8n.yaml |
|
||||
| data | null | path to data file, i.e. i.e. coco128.yaml |
|
||||
|
||||
### Training
|
||||
|
||||
Training settings for YOLO models refer to the various hyperparameters and configurations used to train the model on a
|
||||
dataset. These settings can affect the model's performance, speed, and accuracy. Some common YOLO training settings
|
||||
include the batch size, learning rate, momentum, and weight decay. Other factors that may affect the training process
|
||||
include the choice of optimizer, the choice of loss function, and the size and composition of the training dataset. It
|
||||
is important to carefully tune and experiment with these settings to achieve the best possible performance for a given
|
||||
task.
|
||||
|
||||
| Key | Value | Description |
|
||||
|-----------------|--------|-----------------------------------------------------------------------------|
|
||||
| model | null | path to model file, i.e. yolov8n.pt, yolov8n.yaml |
|
||||
| data | null | path to data file, i.e. i.e. coco128.yaml |
|
||||
| epochs | 100 | number of epochs to train for |
|
||||
| patience | 50 | epochs to wait for no observable improvement for early stopping of training |
|
||||
| batch | 16 | number of images per batch (-1 for AutoBatch) |
|
||||
| imgsz | 640 | size of input images as integer or w,h |
|
||||
| save | True | save train checkpoints and predict results |
|
||||
| cache | False | True/ram, disk or False. Use cache for data loading |
|
||||
| device | null | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu |
|
||||
| workers | 8 | number of worker threads for data loading (per RANK if DDP) |
|
||||
| project | null | project name |
|
||||
| name | null | experiment name |
|
||||
| exist_ok | False | whether to overwrite existing experiment |
|
||||
| pretrained | False | whether to use a pretrained model |
|
||||
| optimizer | 'SGD' | optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp'] |
|
||||
| verbose | False | whether to print verbose output |
|
||||
| seed | 0 | random seed for reproducibility |
|
||||
| deterministic | True | whether to enable deterministic mode |
|
||||
| single_cls | False | train multi-class data as single-class |
|
||||
| image_weights | False | use weighted image selection for training |
|
||||
| rect | False | support rectangular training |
|
||||
| cos_lr | False | use cosine learning rate scheduler |
|
||||
| close_mosaic | 10 | disable mosaic augmentation for final 10 epochs |
|
||||
| resume | False | resume training from last checkpoint |
|
||||
| lr0 | 0.01 | initial learning rate (i.e. SGD=1E-2, Adam=1E-3) |
|
||||
| lrf | 0.01 | final learning rate (lr0 * lrf) |
|
||||
| momentum | 0.937 | SGD momentum/Adam beta1 |
|
||||
| weight_decay | 0.0005 | optimizer weight decay 5e-4 |
|
||||
| warmup_epochs | 3.0 | warmup epochs (fractions ok) |
|
||||
| warmup_momentum | 0.8 | warmup initial momentum |
|
||||
| warmup_bias_lr | 0.1 | warmup initial bias lr |
|
||||
| box | 7.5 | box loss gain |
|
||||
| cls | 0.5 | cls loss gain (scale with pixels) |
|
||||
| dfl | 1.5 | dfl loss gain |
|
||||
| fl_gamma | 0.0 | focal loss gamma (efficientDet default gamma=1.5) |
|
||||
| label_smoothing | 0.0 | label smoothing (fraction) |
|
||||
| nbs | 64 | nominal batch size |
|
||||
| overlap_mask | True | masks should overlap during training (segment train only) |
|
||||
| mask_ratio | 4 | mask downsample ratio (segment train only) |
|
||||
| dropout | 0.0 | use dropout regularization (classify train only) |
|
||||
|
||||
### Prediction
|
||||
|
||||
Prediction settings for YOLO models refer to the various hyperparameters and configurations used to make predictions
|
||||
with the model on new data. These settings can affect the model's performance, speed, and accuracy. Some common YOLO
|
||||
prediction settings include the confidence threshold, non-maximum suppression (NMS) threshold, and the number of classes
|
||||
to consider. Other factors that may affect the prediction process include the size and format of the input data, the
|
||||
presence of additional features such as masks or multiple labels per box, and the specific task the model is being used
|
||||
for. It is important to carefully tune and experiment with these settings to achieve the best possible performance for a
|
||||
given task.
|
||||
|
||||
| Key | Value | Description |
|
||||
|----------------|----------------------|---------------------------------------------------------|
|
||||
| source | 'ultralytics/assets' | source directory for images or videos |
|
||||
| show | False | show results if possible |
|
||||
| save_txt | False | save results as .txt file |
|
||||
| save_conf | False | save results with confidence scores |
|
||||
| save_crop | Fasle | save cropped images with results |
|
||||
| hide_labels | False | hide labels |
|
||||
| hide_conf | False | hide confidence scores |
|
||||
| vid_stride | False | video frame-rate stride |
|
||||
| line_thickness | 3 | bounding box thickness (pixels) |
|
||||
| visualize | False | visualize model features |
|
||||
| augment | False | apply image augmentation to prediction sources |
|
||||
| agnostic_nms | False | class-agnostic NMS |
|
||||
| retina_masks | False | use high-resolution segmentation masks |
|
||||
| classes | null | filter results by class, i.e. class=0, or class=[0,2,3] |
|
||||
|
||||
### Validation
|
||||
|
||||
Validation settings for YOLO models refer to the various hyperparameters and configurations used to
|
||||
evaluate the model's performance on a validation dataset. These settings can affect the model's performance, speed, and
|
||||
accuracy. Some common YOLO validation settings include the batch size, the frequency with which validation is performed
|
||||
during training, and the metrics used to evaluate the model's performance. Other factors that may affect the validation
|
||||
process include the size and composition of the validation dataset and the specific task the model is being used for. It
|
||||
is important to carefully tune and experiment with these settings to ensure that the model is performing well on the
|
||||
validation dataset and to detect and prevent overfitting.
|
||||
|
||||
| Key | Value | Description |
|
||||
|-------------|-------|-----------------------------------------------------------------------------|
|
||||
| val | True | validate/test during training |
|
||||
| save_json | False | save results to JSON file |
|
||||
| save_hybrid | False | save hybrid version of labels (labels + additional predictions) |
|
||||
| conf | 0.001 | object confidence threshold for detection (default 0.25 predict, 0.001 val) |
|
||||
| iou | 0.6 | intersection over union (IoU) threshold for NMS |
|
||||
| max_det | 300 | maximum number of detections per image |
|
||||
| half | True | use half precision (FP16) |
|
||||
| dnn | False | use OpenCV DNN for ONNX inference |
|
||||
| plots | False | show plots during training |
|
||||
|
||||
### Export
|
||||
|
||||
Export settings for YOLO models refer to the various configurations and options used to save or
|
||||
export the model for use in other environments or platforms. These settings can affect the model's performance, size,
|
||||
and compatibility with different systems. Some common YOLO export settings include the format of the exported model
|
||||
file (e.g. ONNX, TensorFlow SavedModel), the device on which the model will be run (e.g. CPU, GPU), and the presence of
|
||||
additional features such as masks or multiple labels per box. Other factors that may affect the export process include
|
||||
the specific task the model is being used for and the requirements or constraints of the target environment or platform.
|
||||
It is important to carefully consider and configure these settings to ensure that the exported model is optimized for
|
||||
the intended use case and can be used effectively in the target environment.
|
||||
|
||||
### Augmentation
|
||||
|
||||
Augmentation settings for YOLO models refer to the various transformations and modifications
|
||||
applied to the training data to increase the diversity and size of the dataset. These settings can affect the model's
|
||||
performance, speed, and accuracy. Some common YOLO augmentation settings include the type and intensity of the
|
||||
transformations applied (e.g. random flips, rotations, cropping, color changes), the probability with which each
|
||||
transformation is applied, and the presence of additional features such as masks or multiple labels per box. Other
|
||||
factors that may affect the augmentation process include the size and composition of the original dataset and the
|
||||
specific task the model is being used for. It is important to carefully tune and experiment with these settings to
|
||||
ensure that the augmented dataset is diverse and representative enough to train a high-performing model.
|
||||
|
||||
| Key | Value | Description |
|
||||
|-------------|-------|-------------------------------------------------|
|
||||
| hsv_h | 0.015 | image HSV-Hue augmentation (fraction) |
|
||||
| hsv_s | 0.7 | image HSV-Saturation augmentation (fraction) |
|
||||
| hsv_v | 0.4 | image HSV-Value augmentation (fraction) |
|
||||
| degrees | 0.0 | image rotation (+/- deg) |
|
||||
| translate | 0.1 | image translation (+/- fraction) |
|
||||
| scale | 0.5 | image scale (+/- gain) |
|
||||
| shear | 0.0 | image shear (+/- deg) |
|
||||
| perspective | 0.0 | image perspective (+/- fraction), range 0-0.001 |
|
||||
| flipud | 0.0 | image flip up-down (probability) |
|
||||
| fliplr | 0.5 | image flip left-right (probability) |
|
||||
| mosaic | 1.0 | image mosaic (probability) |
|
||||
| mixup | 0.0 | image mixup (probability) |
|
||||
| copy_paste | 0.0 | segment copy-paste (probability) |
|
||||
|
||||
### Logging, checkpoints, plotting and file management
|
||||
|
||||
Logging, checkpoints, plotting, and file management are important considerations when training a YOLO model.
|
||||
|
||||
- Logging: It is often helpful to log various metrics and statistics during training to track the model's progress and
|
||||
diagnose any issues that may arise. This can be done using a logging library such as TensorBoard or by writing log
|
||||
messages to a file.
|
||||
- Checkpoints: It is a good practice to save checkpoints of the model at regular intervals during training. This allows
|
||||
you to resume training from a previous point if the training process is interrupted or if you want to experiment with
|
||||
different training configurations.
|
||||
- Plotting: Visualizing the model's performance and training progress can be helpful for understanding how the model is
|
||||
behaving and identifying potential issues. This can be done using a plotting library such as matplotlib or by
|
||||
generating plots using a logging library such as TensorBoard.
|
||||
- File management: Managing the various files generated during the training process, such as model checkpoints, log
|
||||
files, and plots, can be challenging. It is important to have a clear and organized file structure to keep track of
|
||||
these files and make it easy to access and analyze them as needed.
|
||||
|
||||
Effective logging, checkpointing, plotting, and file management can help you keep track of the model's progress and make
|
||||
it easier to debug and optimize the training process.
|
||||
|
||||
| Key | Value | Description |
|
||||
|----------|--------|------------------------------------------------------------------------------------------------|
|
||||
| project | 'runs' | project name |
|
||||
| name | 'exp' | experiment name. `exp` gets automatically incremented if not specified, i.e, `exp`, `exp2` ... |
|
||||
| exist_ok | False | whether to overwrite existing experiment |
|
||||
| plots | False | save plots during train/val |
|
||||
| save | False | save train checkpoints and predict results |
|
@ -17,7 +17,7 @@ Where:
|
||||
the `TASK` from the model type.
|
||||
- `MODE` (required) is one of `[train, val, predict, export]`
|
||||
- `ARGS` (optional) are any number of custom `arg=value` pairs like `imgsz=320` that override defaults.
|
||||
For a full list of available `ARGS` see the [Configuration](config.md) page.
|
||||
For a full list of available `ARGS` see the [Configuration](cfg.md) page.
|
||||
|
||||
!!! note ""
|
||||
|
||||
@ -30,7 +30,7 @@ Where:
|
||||
## Train
|
||||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
|
||||
the [Configuration](config.md) page.
|
||||
the [Configuration](cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
|
202
docs/config.md
202
docs/config.md
@ -1,202 +0,0 @@
|
||||
YOLO settings and hyperparameters play a critical role in the model's performance, speed, and accuracy. These settings
|
||||
and hyperparameters can affect the model's behavior at various stages of the model development process, including
|
||||
training, validation, and prediction.
|
||||
|
||||
Properly setting and tuning these parameters can have a significant impact on the model's ability to learn effectively
|
||||
from the training data and generalize to new data. For example, choosing an appropriate learning rate, batch size, and
|
||||
optimization algorithm can greatly affect the model's convergence speed and accuracy. Similarly, setting the correct
|
||||
confidence threshold and non-maximum suppression (NMS) threshold can affect the model's performance on detection tasks.
|
||||
|
||||
It is important to carefully consider and experiment with these settings and hyperparameters to achieve the best
|
||||
possible performance for a given task. This can involve trial and error, as well as using techniques such as
|
||||
hyperparameter optimization to search for the optimal set of parameters.
|
||||
|
||||
In summary, YOLO settings and hyperparameters are a key factor in the success of a YOLO model, and it is important to
|
||||
pay careful attention to them to achieve the desired results.
|
||||
|
||||
### Setting the operation type
|
||||
|
||||
YOLO models can be used for a variety of tasks, including detection, segmentation, and classification. These tasks
|
||||
differ in the type of output they produce and the specific problem they are designed to solve.
|
||||
|
||||
- Detection: Detection tasks involve identifying and localizing objects or regions of interest in an image or video.
|
||||
YOLO models can be used for object detection tasks by predicting the bounding boxes and class labels of objects in an
|
||||
image.
|
||||
- Segmentation: Segmentation tasks involve dividing an image or video into regions or pixels that correspond to
|
||||
different objects or classes. YOLO models can be used for image segmentation tasks by predicting a mask or label for
|
||||
each pixel in an image.
|
||||
- Classification: Classification tasks involve assigning a class label to an input, such as an image or text. YOLO
|
||||
models can be used for image classification tasks by predicting the class label of an input image.
|
||||
|
||||
YOLO models can be used in different modes depending on the specific problem you are trying to solve. These modes
|
||||
include train, val, and predict.
|
||||
|
||||
- Train: The train mode is used to train the model on a dataset. This mode is typically used during the development and
|
||||
testing phase of a model.
|
||||
- Val: The val mode is used to evaluate the model's performance on a validation dataset. This mode is typically used to
|
||||
tune the model's hyperparameters and detect overfitting.
|
||||
- Predict: The predict mode is used to make predictions with the model on new data. This mode is typically used in
|
||||
production or when deploying the model to users.
|
||||
|
||||
| Key | Value | Description |
|
||||
|--------|----------|--------------------------------------------------------------------------------------------------------|
|
||||
| task | `detect` | Set the task via CLI. See Tasks for all supported tasks like - `detect`, `segment`, `classify` |
|
||||
| mode | `train` | Set the mode via CLI. It can be `train`, `val`, `predict`, `export` |
|
||||
| resume | `False` | Resume last given task when set to `True`. <br> Resume from a given checkpoint is `model.pt` is passed |
|
||||
| model | null | Set the model. Format can differ for task type. Supports `model_name`, `model.yaml` & `model.pt` |
|
||||
| data | null | Set the data. Format can differ for task type. Supports `data.yaml`, `data_folder`, `dataset_name` |
|
||||
|
||||
### Training
|
||||
|
||||
Training settings for YOLO models refer to the various hyperparameters and configurations used to train the model on a
|
||||
dataset. These settings can affect the model's performance, speed, and accuracy. Some common YOLO training settings
|
||||
include the batch size, learning rate, momentum, and weight decay. Other factors that may affect the training process
|
||||
include the choice of optimizer, the choice of loss function, and the size and composition of the training dataset. It
|
||||
is important to carefully tune and experiment with these settings to achieve the best possible performance for a given
|
||||
task.
|
||||
|
||||
| Key | Value | Description |
|
||||
|-----------------|---------|-----------------------------------------------------------------------------|
|
||||
| device | '' | cuda device, i.e. 0 or 0,1,2,3 or cpu. `''` selects available cuda 0 device |
|
||||
| epochs | 100 | Number of epochs to train |
|
||||
| workers | 8 | Number of cpu workers used per process. Scales automatically with DDP |
|
||||
| batch | 16 | Batch size of the dataloader |
|
||||
| imgsz | 640 | Image size of data in dataloader |
|
||||
| optimizer | SGD | Optimizer used. Supported optimizer are: `Adam`, `SGD`, `RMSProp` |
|
||||
| single_cls | False | Train on multi-class data as single-class |
|
||||
| image_weights | False | Use weighted image selection for training |
|
||||
| rect | False | Enable rectangular training |
|
||||
| cos_lr | False | Use cosine LR scheduler |
|
||||
| lr0 | 0.01 | Initial learning rate |
|
||||
| lrf | 0.01 | Final OneCycleLR learning rate |
|
||||
| momentum | 0.937 | Use as `momentum` for SGD and `beta1` for Adam |
|
||||
| weight_decay | 0.0005 | Optimizer weight decay |
|
||||
| warmup_epochs | 3.0 | Warmup epochs. Fractions are ok. |
|
||||
| warmup_momentum | 0.8 | Warmup initial momentum |
|
||||
| warmup_bias_lr | 0.1 | Warmup initial bias lr |
|
||||
| box | 0.05 | Box loss gain |
|
||||
| cls | 0.5 | cls loss gain |
|
||||
| cls_pw | 1.0 | cls BCELoss positive_weight |
|
||||
| obj | 1.0 | bj loss gain (scale with pixels) |
|
||||
| obj_pw | 1.0 | obj BCELoss positive_weight |
|
||||
| iou_t | 0.20 | IOU training threshold |
|
||||
| anchor_t | 4.0 | anchor-multiple threshold |
|
||||
| fl_gamma | 0.0 | focal loss gamma |
|
||||
| label_smoothing | 0.0 | |
|
||||
| nbs | 64 | nominal batch size |
|
||||
| overlap_mask | `True` | **Segmentation**: Use mask overlapping during training |
|
||||
| mask_ratio | 4 | **Segmentation**: Set mask downsampling |
|
||||
| dropout | `False` | **Classification**: Use dropout while training |
|
||||
|
||||
### Prediction
|
||||
|
||||
Prediction settings for YOLO models refer to the various hyperparameters and configurations used to make predictions
|
||||
with the model on new data. These settings can affect the model's performance, speed, and accuracy. Some common YOLO
|
||||
prediction settings include the confidence threshold, non-maximum suppression (NMS) threshold, and the number of classes
|
||||
to consider. Other factors that may affect the prediction process include the size and format of the input data, the
|
||||
presence of additional features such as masks or multiple labels per box, and the specific task the model is being used
|
||||
for. It is important to carefully tune and experiment with these settings to achieve the best possible performance for a
|
||||
given task.
|
||||
|
||||
| Key | Value | Description |
|
||||
|----------------|----------------------|-------------------------------------------------|
|
||||
| source | `ultralytics/assets` | Input source. Accepts image, folder, video, url |
|
||||
| show | `False` | View the prediction images |
|
||||
| save_txt | `False` | Save the results in a txt file |
|
||||
| save_conf | `False` | Save the condidence scores |
|
||||
| save_crop | `Fasle` | |
|
||||
| hide_labels | `False` | Hide the labels |
|
||||
| hide_conf | `False` | Hide the confidence scores |
|
||||
| vid_stride | `False` | Input video frame-rate stride |
|
||||
| line_thickness | `3` | Bounding-box thickness (pixels) |
|
||||
| visualize | `False` | Visualize model features |
|
||||
| augment | `False` | Augmented inference |
|
||||
| agnostic_nms | `False` | Class-agnostic NMS |
|
||||
| retina_masks | `False` | **Segmentation:** High resolution masks |
|
||||
|
||||
### Validation
|
||||
|
||||
Validation settings for YOLO models refer to the various hyperparameters and configurations used to
|
||||
evaluate the model's performance on a validation dataset. These settings can affect the model's performance, speed, and
|
||||
accuracy. Some common YOLO validation settings include the batch size, the frequency with which validation is performed
|
||||
during training, and the metrics used to evaluate the model's performance. Other factors that may affect the validation
|
||||
process include the size and composition of the validation dataset and the specific task the model is being used for. It
|
||||
is important to carefully tune and experiment with these settings to ensure that the model is performing well on the
|
||||
validation dataset and to detect and prevent overfitting.
|
||||
|
||||
| Key | Value | Description |
|
||||
|-------------|---------|-----------------------------------|
|
||||
| noval | `False` | ??? |
|
||||
| save_json | `False` | |
|
||||
| save_hybrid | `False` | |
|
||||
| conf | `0.001` | Confidence threshold |
|
||||
| iou | `0.6` | IoU threshold |
|
||||
| max_det | `300` | Maximum number of detections |
|
||||
| half | `True` | Use .half() mode. |
|
||||
| dnn | `False` | Use OpenCV DNN for ONNX inference |
|
||||
| plots | `False` | |
|
||||
|
||||
### Export
|
||||
|
||||
Export settings for YOLO models refer to the various configurations and options used to save or
|
||||
export the model for use in other environments or platforms. These settings can affect the model's performance, size,
|
||||
and compatibility with different systems. Some common YOLO export settings include the format of the exported model
|
||||
file (e.g. ONNX, TensorFlow SavedModel), the device on which the model will be run (e.g. CPU, GPU), and the presence of
|
||||
additional features such as masks or multiple labels per box. Other factors that may affect the export process include
|
||||
the specific task the model is being used for and the requirements or constraints of the target environment or platform.
|
||||
It is important to carefully consider and configure these settings to ensure that the exported model is optimized for
|
||||
the intended use case and can be used effectively in the target environment.
|
||||
|
||||
### Augmentation
|
||||
|
||||
Augmentation settings for YOLO models refer to the various transformations and modifications
|
||||
applied to the training data to increase the diversity and size of the dataset. These settings can affect the model's
|
||||
performance, speed, and accuracy. Some common YOLO augmentation settings include the type and intensity of the
|
||||
transformations applied (e.g. random flips, rotations, cropping, color changes), the probability with which each
|
||||
transformation is applied, and the presence of additional features such as masks or multiple labels per box. Other
|
||||
factors that may affect the augmentation process include the size and composition of the original dataset and the
|
||||
specific task the model is being used for. It is important to carefully tune and experiment with these settings to
|
||||
ensure that the augmented dataset is diverse and representative enough to train a high-performing model.
|
||||
|
||||
| hsv_h | 0.015 | Image HSV-Hue augmentation (fraction) |
|
||||
|-------------|-------|-------------------------------------------------|
|
||||
| hsv_s | 0.7 | Image HSV-Saturation augmentation (fraction) |
|
||||
| hsv_v | 0.4 | Image HSV-Value augmentation (fraction) |
|
||||
| degrees | 0.0 | Image rotation (+/- deg) |
|
||||
| translate | 0.1 | Image translation (+/- fraction) |
|
||||
| scale | 0.5 | Image scale (+/- gain) |
|
||||
| shear | 0.0 | Image shear (+/- deg) |
|
||||
| perspective | 0.0 | Image perspective (+/- fraction), range 0-0.001 |
|
||||
| flipud | 0.0 | Image flip up-down (probability) |
|
||||
| fliplr | 0.5 | Image flip left-right (probability) |
|
||||
| mosaic | 1.0 | Image mosaic (probability) |
|
||||
| mixup | 0.0 | Image mixup (probability) |
|
||||
| copy_paste | 0.0 | Segment copy-paste (probability) |
|
||||
|
||||
### Logging, checkpoints, plotting and file management
|
||||
|
||||
Logging, checkpoints, plotting, and file management are important considerations when training a YOLO model.
|
||||
|
||||
- Logging: It is often helpful to log various metrics and statistics during training to track the model's progress and
|
||||
diagnose any issues that may arise. This can be done using a logging library such as TensorBoard or by writing log
|
||||
messages to a file.
|
||||
- Checkpoints: It is a good practice to save checkpoints of the model at regular intervals during training. This allows
|
||||
you to resume training from a previous point if the training process is interrupted or if you want to experiment with
|
||||
different training configurations.
|
||||
- Plotting: Visualizing the model's performance and training progress can be helpful for understanding how the model is
|
||||
behaving and identifying potential issues. This can be done using a plotting library such as matplotlib or by
|
||||
generating plots using a logging library such as TensorBoard.
|
||||
- File management: Managing the various files generated during the training process, such as model checkpoints, log
|
||||
files, and plots, can be challenging. It is important to have a clear and organized file structure to keep track of
|
||||
these files and make it easy to access and analyze them as needed.
|
||||
|
||||
Effective logging, checkpointing, plotting, and file management can help you keep track of the model's progress and make
|
||||
it easier to debug and optimize the training process.
|
||||
|
||||
| Key | Value | Description |
|
||||
|-----------|---------|---------------------------------------------------------------------------------------------|
|
||||
| project: | 'runs' | The project name |
|
||||
| name: | 'exp' | The run name. `exp` gets automatically incremented if not specified, i.e, `exp`, `exp2` ... |
|
||||
| exist_ok: | `False` | Will replace current directory contents if set to True and output directory exists. |
|
||||
| plots | `False` | **Validation**: Save plots while validation |
|
||||
| save | `False` | Save any plots, models or files |
|
@ -48,19 +48,21 @@ box.xyxy
|
||||
```
|
||||
- Properties and conversions
|
||||
```
|
||||
results.boxes.xyxy # box with xyxy format, (N, 4)
|
||||
results.boxes.xywh # box with xywh format, (N, 4)
|
||||
results.boxes.xyxyn # box with xyxy format but normalized, (N, 4)
|
||||
results.boxes.xywhn # box with xywh format but normalized, (N, 4)
|
||||
results.boxes.conf # confidence score, (N, 1)
|
||||
results.boxes.cls # cls, (N, 1)
|
||||
boxes.xyxy # box with xyxy format, (N, 4)
|
||||
boxes.xywh # box with xywh format, (N, 4)
|
||||
boxes.xyxyn # box with xyxy format but normalized, (N, 4)
|
||||
boxes.xywhn # box with xywh format but normalized, (N, 4)
|
||||
boxes.conf # confidence score, (N, 1)
|
||||
boxes.cls # cls, (N, 1)
|
||||
boxes.data # raw bboxes tensor, (N, 6) or boxes.boxes .
|
||||
```
|
||||
### Masks
|
||||
`Masks` object can be used index, manipulate and convert masks to segments. The segment conversion operation is cached.
|
||||
|
||||
```python
|
||||
results.masks.masks # masks, (N, H, W)
|
||||
results.masks.segments # bounding coordinates of masks, List[segment] * N
|
||||
masks = results.masks # Masks object
|
||||
masks.segments # bounding coordinates of masks, List[segment] * N
|
||||
masks.data # raw masks tensor, (N, H, W) or masks.masks
|
||||
```
|
||||
|
||||
### probs
|
||||
|
@ -16,7 +16,7 @@ of that class are located or what their exact shape is.
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments
|
||||
see the [Configuration](../config.md) page.
|
||||
see the [Configuration](../cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
|
@ -16,7 +16,7 @@ scene, but don't need to know exactly where the object is or its exact shape.
|
||||
## Train
|
||||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see
|
||||
the [Configuration](../config.md) page.
|
||||
the [Configuration](../cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
|
@ -16,7 +16,7 @@ segmentation is useful when you need to know not only where objects are in an im
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available
|
||||
arguments see the [Configuration](../config.md) page.
|
||||
arguments see the [Configuration](../cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
|
@ -85,7 +85,7 @@ nav:
|
||||
- CLI: cli.md
|
||||
- Python: python.md
|
||||
- Predict: predict.md
|
||||
- Configuration: config.md
|
||||
- Configuration: cfg.md
|
||||
- Customization Guide: engine.md
|
||||
- Ultralytics HUB: hub.md
|
||||
- iOS and Android App: app.md
|
||||
|
3
setup.py
3
setup.py
@ -51,5 +51,4 @@ setup(
|
||||
"Operating System :: MacOS", "Operating System :: Microsoft :: Windows"],
|
||||
keywords="machine-learning, deep-learning, vision, ML, DL, AI, YOLO, YOLOv3, YOLOv5, YOLOv8, HUB, Ultralytics",
|
||||
entry_points={
|
||||
'console_scripts':
|
||||
['yolo = ultralytics.yolo.configs:entrypoint', 'ultralytics = ultralytics.yolo.configs:entrypoint']})
|
||||
'console_scripts': ['yolo = ultralytics.yolo.cfg:entrypoint', 'ultralytics = ultralytics.yolo.cfg:entrypoint']})
|
||||
|
@ -2,14 +2,14 @@
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG_PATH, ROOT, SETTINGS
|
||||
from ultralytics.yolo.v8 import classify, detect, segment
|
||||
|
||||
CFG_DET = 'yolov8n.yaml'
|
||||
CFG_SEG = 'yolov8n-seg.yaml'
|
||||
CFG_CLS = 'squeezenet1_0'
|
||||
CFG = get_config(DEFAULT_CFG_PATH)
|
||||
CFG = get_cfg(DEFAULT_CFG_PATH)
|
||||
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
|
||||
SOURCE = ROOT / "assets"
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
__version__ = "8.0.12"
|
||||
__version__ = "8.0.14"
|
||||
|
||||
from ultralytics.yolo.engine.model import YOLO
|
||||
from ultralytics.yolo.utils import ops
|
||||
|
@ -136,12 +136,12 @@ def sync_analytics(cfg, all_keys=False, enabled=False):
|
||||
Sync analytics data if enabled in the global settings
|
||||
|
||||
Args:
|
||||
cfg (DictConfig): Configuration for the task and mode.
|
||||
cfg (UltralyticsCFG): Configuration for the task and mode.
|
||||
all_keys (bool): Sync all items, not just non-default values.
|
||||
enabled (bool): For debugging.
|
||||
"""
|
||||
if SETTINGS['sync'] and RANK in {-1, 0} and enabled:
|
||||
cfg = dict(cfg) # convert type from DictConfig to dict
|
||||
cfg = dict(cfg) # convert type from UltralyticsCFG to dict
|
||||
if not all_keys:
|
||||
cfg = {k: v for k, v in cfg.items() if v != DEFAULT_CFG_DICT.get(k, None)} # retain non-default values
|
||||
cfg['uuid'] = SETTINGS['uuid'] # add the device UUID to the configuration data
|
||||
|
@ -95,7 +95,6 @@ class BaseModel(nn.Module):
|
||||
(nn.Module): The fused model is returned.
|
||||
"""
|
||||
if not self.is_fused():
|
||||
LOGGER.info('Fusing... ')
|
||||
for m in self.model.modules():
|
||||
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
||||
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||
|
@ -28,7 +28,7 @@ CLI_HELP_MSG = \
|
||||
Where TASK (optional) is one of [detect, segment, classify]
|
||||
MODE (required) is one of [train, val, predict, export]
|
||||
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
||||
For a full list of available ARGS see https://docs.ultralytics.com/config.
|
||||
For a full list of available ARGS see https://docs.ultralytics.com/cfg.
|
||||
|
||||
Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
||||
@ -48,7 +48,7 @@ CLI_HELP_MSG = \
|
||||
yolo checks
|
||||
yolo version
|
||||
yolo settings
|
||||
yolo copy-config
|
||||
yolo copy-cfg
|
||||
|
||||
Docs: https://docs.ultralytics.com/cli
|
||||
Community: https://community.ultralytics.com
|
||||
@ -56,6 +56,15 @@ CLI_HELP_MSG = \
|
||||
"""
|
||||
|
||||
|
||||
class UltralyticsCFG(SimpleNamespace):
|
||||
"""
|
||||
UltralyticsCFG iterable SimpleNamespace class to allow SimpleNamespace to be used with dict() and in for loops
|
||||
"""
|
||||
|
||||
def __iter__(self):
|
||||
return iter(vars(self).items())
|
||||
|
||||
|
||||
def cfg2dict(cfg):
|
||||
"""
|
||||
Convert a configuration object to a dictionary.
|
||||
@ -75,30 +84,30 @@ def cfg2dict(cfg):
|
||||
return cfg
|
||||
|
||||
|
||||
def get_config(config: Union[str, Path, Dict, SimpleNamespace], overrides: Dict = None):
|
||||
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace], overrides: Dict = None):
|
||||
"""
|
||||
Load and merge configuration data from a file or dictionary.
|
||||
|
||||
Args:
|
||||
config (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data.
|
||||
cfg (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data.
|
||||
overrides (str) or (Dict), optional: Overrides in the form of a file name or a dictionary. Default is None.
|
||||
|
||||
Returns:
|
||||
(SimpleNamespace): Training arguments namespace.
|
||||
"""
|
||||
config = cfg2dict(config)
|
||||
cfg = cfg2dict(cfg)
|
||||
|
||||
# Merge overrides
|
||||
if overrides:
|
||||
overrides = cfg2dict(overrides)
|
||||
check_config_mismatch(config, overrides)
|
||||
config = {**config, **overrides} # merge config and overrides dicts (prefer overrides)
|
||||
check_cfg_mismatch(cfg, overrides)
|
||||
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
|
||||
|
||||
# Return instance
|
||||
return SimpleNamespace(**config)
|
||||
return UltralyticsCFG(**cfg)
|
||||
|
||||
|
||||
def check_config_mismatch(base: Dict, custom: Dict):
|
||||
def check_cfg_mismatch(base: Dict, custom: Dict):
|
||||
"""
|
||||
This function checks for any mismatched keys between a custom configuration list and a base configuration list.
|
||||
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
|
||||
@ -127,8 +136,8 @@ def entrypoint(debug=False):
|
||||
- running special modes like 'checks'
|
||||
- passing overrides to the package's configuration
|
||||
|
||||
It uses the package's default config and initializes it using the passed overrides.
|
||||
Then it calls the CLI function with the composed config
|
||||
It uses the package's default cfg and initializes it using the passed overrides.
|
||||
Then it calls the CLI function with the composed cfg
|
||||
"""
|
||||
if debug:
|
||||
args = ['train', 'predict', 'model=yolov8n.pt'] # for testing
|
||||
@ -149,7 +158,7 @@ def entrypoint(debug=False):
|
||||
'checks': checks.check_yolo,
|
||||
'version': lambda: LOGGER.info(__version__),
|
||||
'settings': print_settings,
|
||||
'copy-config': copy_default_config}
|
||||
'copy-cfg': copy_default_config}
|
||||
|
||||
overrides = {} # basic overrides, i.e. imgsz=320
|
||||
defaults = yaml_load(DEFAULT_CFG_PATH)
|
||||
@ -190,7 +199,7 @@ def entrypoint(debug=False):
|
||||
f"https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml"
|
||||
f"\n{CLI_HELP_MSG}")
|
||||
|
||||
cfg = get_config(defaults, overrides) # create CFG instance
|
||||
cfg = get_cfg(defaults, overrides) # create CFG instance
|
||||
|
||||
# Mapping from task to module
|
||||
module = {"detect": yolo.v8.detect, "segment": yolo.v8.segment, "classify": yolo.v8.classify}.get(cfg.task)
|
||||
@ -214,7 +223,7 @@ def copy_default_config():
|
||||
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')
|
||||
shutil.copy2(DEFAULT_CFG_PATH, new_file)
|
||||
LOGGER.info(f"{PREFIX}{DEFAULT_CFG_PATH} copied to {new_file}\n"
|
||||
f"Usage for running YOLO with this new custom config:\nyolo cfg={new_file} args...")
|
||||
f"Usage for running YOLO with this new custom cfg:\nyolo cfg={new_file} args...")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
@ -1,20 +1,20 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
# Default training settings and hyperparameters for medium-augmentation COCO training
|
||||
|
||||
task: "detect" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case. Specify task to run.
|
||||
mode: "train" # choices=['train', 'val', 'predict'] # mode to run task in.
|
||||
task: "detect" # inference task, i.e. detect, segment, classify
|
||||
mode: "train" # YOLO mode, i.e. train, val, predict, export
|
||||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: null # i.e. yolov8n.pt, yolov8n.yaml. Path to model file
|
||||
data: null # i.e. coco128.yaml. Path to data file
|
||||
model: null # path to model file, i.e. yolov8n.pt, yolov8n.yaml
|
||||
data: null # path to data file, i.e. i.e. coco128.yaml
|
||||
epochs: 100 # number of epochs to train for
|
||||
patience: 50 # epochs to wait for no observable improvement for early stopping of training
|
||||
batch: 16 # number of images per batch
|
||||
imgsz: 640 # size of input images
|
||||
save: True # save checkpoints
|
||||
batch: 16 # number of images per batch (-1 for AutoBatch)
|
||||
imgsz: 640 # size of input images as integer or w,h
|
||||
save: True # save train checkpoints and predict results
|
||||
cache: False # True/ram, disk or False. Use cache for data loading
|
||||
device: null # cuda device, i.e. 0 or 0,1,2,3 or cpu. Device to run on
|
||||
workers: 8 # number of worker threads for data loading
|
||||
device: null # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
|
||||
workers: 8 # number of worker threads for data loading (per RANK if DDP)
|
||||
project: null # project name
|
||||
name: null # experiment name
|
||||
exist_ok: False # whether to overwrite existing experiment
|
||||
@ -30,10 +30,10 @@ cos_lr: False # use cosine learning rate scheduler
|
||||
close_mosaic: 10 # disable mosaic augmentation for final 10 epochs
|
||||
resume: False # resume training from last checkpoint
|
||||
# Segmentation
|
||||
overlap_mask: True # masks should overlap during training
|
||||
mask_ratio: 4 # mask downsample ratio
|
||||
overlap_mask: True # masks should overlap during training (segment train only)
|
||||
mask_ratio: 4 # mask downsample ratio (segment train only)
|
||||
# Classification
|
||||
dropout: 0.0 # use dropout regularization
|
||||
dropout: 0.0 # use dropout regularization (classify train only)
|
||||
|
||||
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
||||
val: True # validate/test during training
|
||||
@ -44,7 +44,7 @@ iou: 0.7 # intersection over union (IoU) threshold for NMS
|
||||
max_det: 300 # maximum number of detections per image
|
||||
half: False # use half precision (FP16)
|
||||
dnn: False # use OpenCV DNN for ONNX inference
|
||||
plots: True # show plots during training
|
||||
plots: True # save plots during train/val
|
||||
|
||||
# Prediction settings --------------------------------------------------------------------------------------------------
|
||||
source: null # source directory for images or videos
|
||||
@ -56,10 +56,11 @@ hide_labels: False # hide labels
|
||||
hide_conf: False # hide confidence scores
|
||||
vid_stride: 1 # video frame-rate stride
|
||||
line_thickness: 3 # bounding box thickness (pixels)
|
||||
visualize: False # visualize results
|
||||
augment: False # apply data augmentation to images
|
||||
visualize: False # visualize model features
|
||||
augment: False # apply image augmentation to prediction sources
|
||||
agnostic_nms: False # class-agnostic NMS
|
||||
retina_masks: False # use retina masks for object detection
|
||||
retina_masks: False # use high-resolution segmentation masks
|
||||
classes: null # filter results by class, i.e. class=0, or class=[0,2,3]
|
||||
|
||||
# Export settings ------------------------------------------------------------------------------------------------------
|
||||
format: torchscript # format to export to
|
||||
@ -73,8 +74,8 @@ workspace: 4 # TensorRT: workspace size (GB)
|
||||
nms: False # CoreML: add NMS
|
||||
|
||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||||
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
||||
lr0: 0.01 # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
|
||||
lrf: 0.01 # final learning rate (lr0 * lrf)
|
||||
momentum: 0.937 # SGD momentum/Adam beta1
|
||||
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
||||
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
||||
@ -84,7 +85,7 @@ box: 7.5 # box loss gain
|
||||
cls: 0.5 # cls loss gain (scale with pixels)
|
||||
dfl: 1.5 # dfl loss gain
|
||||
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
||||
label_smoothing: 0.0
|
||||
label_smoothing: 0.0 # label smoothing (fraction)
|
||||
nbs: 64 # nominal batch size
|
||||
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
||||
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
@ -615,7 +615,7 @@ class LoadImagesAndLabels(Dataset):
|
||||
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
||||
desc = f"{prefix}Scanning {path.parent / path.stem}..."
|
||||
total = len(self.im_files)
|
||||
with (Pool if total > 10000 else ThreadPool)(NUM_THREADS) as pool:
|
||||
with ThreadPool(NUM_THREADS) as pool:
|
||||
results = pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix)))
|
||||
pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT)
|
||||
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
from itertools import repeat
|
||||
from multiprocessing.pool import Pool, ThreadPool
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import torchvision
|
||||
@ -51,7 +51,7 @@ class YOLODataset(BaseDataset):
|
||||
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
||||
desc = f"{self.prefix}Scanning {path.parent / path.stem}..."
|
||||
total = len(self.im_files)
|
||||
with (Pool if total > 10000 else ThreadPool)(NUM_THREADS) as pool:
|
||||
with ThreadPool(NUM_THREADS) as pool:
|
||||
results = pool.imap(func=verify_image_label,
|
||||
iterable=zip(self.im_files, self.label_files, repeat(self.prefix),
|
||||
repeat(self.use_keypoints)))
|
||||
|
@ -67,7 +67,7 @@ import torch
|
||||
import ultralytics
|
||||
from ultralytics.nn.modules import Detect, Segment
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
|
||||
from ultralytics.yolo.data.utils import check_dataset
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, callbacks, colorstr, get_default_args, yaml_save
|
||||
@ -134,7 +134,7 @@ class Exporter:
|
||||
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG.
|
||||
overrides (dict, optional): Configuration overrides. Defaults to None.
|
||||
"""
|
||||
self.args = get_config(config, overrides)
|
||||
self.args = get_cfg(config, overrides)
|
||||
self.callbacks = defaultdict(list, {k: [v] for k, v in callbacks.default_callbacks.items()}) # add callbacks
|
||||
callbacks.add_integration_callbacks(self)
|
||||
|
||||
|
@ -4,7 +4,7 @@ from pathlib import Path
|
||||
|
||||
from ultralytics import yolo # noqa
|
||||
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
@ -136,7 +136,7 @@ class YOLO:
|
||||
self.predictor = self.PredictorClass(overrides=overrides)
|
||||
self.predictor.setup_model(model=self.model)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_config(self.predictor.args, overrides)
|
||||
self.predictor.args = get_cfg(self.predictor.args, overrides)
|
||||
return self.predictor(source=source, stream=stream, verbose=verbose)
|
||||
|
||||
@smart_inference_mode()
|
||||
@ -151,7 +151,7 @@ class YOLO:
|
||||
overrides = self.overrides.copy()
|
||||
overrides.update(kwargs)
|
||||
overrides["mode"] = "val"
|
||||
args = get_config(config=DEFAULT_CFG_PATH, overrides=overrides)
|
||||
args = get_cfg(cfg=DEFAULT_CFG_PATH, overrides=overrides)
|
||||
args.data = data or args.data
|
||||
args.task = self.task
|
||||
|
||||
@ -169,7 +169,7 @@ class YOLO:
|
||||
|
||||
overrides = self.overrides.copy()
|
||||
overrides.update(kwargs)
|
||||
args = get_config(config=DEFAULT_CFG_PATH, overrides=overrides)
|
||||
args = get_cfg(cfg=DEFAULT_CFG_PATH, overrides=overrides)
|
||||
args.task = self.task
|
||||
|
||||
print(args)
|
||||
@ -201,7 +201,7 @@ class YOLO:
|
||||
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
||||
self.model = self.trainer.model
|
||||
self.trainer.train()
|
||||
# update model and configs after training
|
||||
# update model and cfg after training
|
||||
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
|
||||
self.overrides = self.model.args
|
||||
|
||||
|
@ -33,7 +33,7 @@ from pathlib import Path
|
||||
import cv2
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages, LoadPilAndNumpy, LoadScreenshots, LoadStreams
|
||||
from ultralytics.yolo.data.utils import IMG_FORMATS, VID_FORMATS
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, SETTINGS, callbacks, colorstr, ops
|
||||
@ -70,7 +70,7 @@ class BasePredictor:
|
||||
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG.
|
||||
overrides (dict, optional): Configuration overrides. Defaults to None.
|
||||
"""
|
||||
self.args = get_config(config, overrides)
|
||||
self.args = get_cfg(config, overrides)
|
||||
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
|
||||
name = self.args.name or f"{self.args.mode}"
|
||||
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
|
||||
@ -84,6 +84,7 @@ class BasePredictor:
|
||||
self.bs = None
|
||||
self.imgsz = None
|
||||
self.device = None
|
||||
self.classes = self.args.classes
|
||||
self.dataset = None
|
||||
self.vid_path, self.vid_writer = None, None
|
||||
self.annotator = None
|
||||
@ -100,7 +101,7 @@ class BasePredictor:
|
||||
def write_results(self, results, batch, print_string):
|
||||
raise NotImplementedError("print_results function needs to be implemented")
|
||||
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
return preds
|
||||
|
||||
def setup_source(self, source=None):
|
||||
@ -195,7 +196,7 @@ class BasePredictor:
|
||||
|
||||
# postprocess
|
||||
with self.dt[2]:
|
||||
results = self.postprocess(preds, im, im0s)
|
||||
results = self.postprocess(preds, im, im0s, self.classes)
|
||||
for i in range(len(im)):
|
||||
p, im0 = (path[i], im0s[i]) if self.webcam or self.from_img else (path, im0s)
|
||||
p = Path(p)
|
||||
|
@ -21,6 +21,8 @@ class Results:
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
data (torch.Tensor): The raw masks tensor
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, boxes=None, masks=None, probs=None, orig_shape=None) -> None:
|
||||
@ -81,19 +83,20 @@ class Results:
|
||||
return len(getattr(self, item))
|
||||
|
||||
def __str__(self):
|
||||
return self.__repr__()
|
||||
str_out = ""
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
str_out = str_out + getattr(self, item).__str__()
|
||||
return str_out
|
||||
|
||||
def __repr__(self):
|
||||
s = f'Ultralytics YOLO {self.__class__} instance\n' # string
|
||||
if self.boxes is not None:
|
||||
s = s + self.boxes.__repr__() + '\n'
|
||||
if self.masks is not None:
|
||||
s = s + self.masks.__repr__() + '\n'
|
||||
if self.probs is not None:
|
||||
s = s + self.probs.__repr__()
|
||||
s += f'original size: {self.orig_shape}\n'
|
||||
|
||||
return s
|
||||
str_out = ""
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
str_out = str_out + getattr(self, item).__repr__()
|
||||
return str_out
|
||||
|
||||
def __getattr__(self, attr):
|
||||
name = self.__class__.__name__
|
||||
@ -129,6 +132,7 @@ class Boxes:
|
||||
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
||||
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
||||
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
||||
data (torch.Tensor): The raw bboxes tensor
|
||||
"""
|
||||
|
||||
def __init__(self, boxes, orig_shape) -> None:
|
||||
@ -198,15 +202,19 @@ class Boxes:
|
||||
def shape(self):
|
||||
return self.boxes.shape
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
return self.boxes
|
||||
|
||||
def __len__(self): # override len(results)
|
||||
return len(self.boxes)
|
||||
|
||||
def __str__(self):
|
||||
return self.__repr__()
|
||||
return self.boxes.__str__()
|
||||
|
||||
def __repr__(self):
|
||||
return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.boxes)}\n" +
|
||||
f"shape: {self.boxes.shape}\n" + f"dtype: {self.boxes.dtype}")
|
||||
f"shape: {self.boxes.shape}\n" + f"dtype: {self.boxes.dtype}\n + {self.boxes.__repr__()}")
|
||||
|
||||
def __getitem__(self, idx):
|
||||
boxes = self.boxes[idx]
|
||||
@ -257,12 +265,16 @@ class Masks:
|
||||
def segments(self):
|
||||
return [
|
||||
ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True)
|
||||
for x in reversed(ops.masks2segments(self.masks))]
|
||||
for x in ops.masks2segments(self.masks)]
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self.masks.shape
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
return self.masks
|
||||
|
||||
def cpu(self):
|
||||
masks = self.masks.cpu()
|
||||
return Masks(masks, self.orig_shape)
|
||||
@ -283,11 +295,11 @@ class Masks:
|
||||
return len(self.masks)
|
||||
|
||||
def __str__(self):
|
||||
return self.__repr__()
|
||||
return self.masks.__str__()
|
||||
|
||||
def __repr__(self):
|
||||
return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.masks)}\n" +
|
||||
f"shape: {self.masks.shape}\n" + f"dtype: {self.masks.dtype}")
|
||||
f"shape: {self.masks.shape}\n" + f"dtype: {self.masks.dtype}\n + {self.masks.__repr__()}")
|
||||
|
||||
def __getitem__(self, idx):
|
||||
masks = self.masks[idx]
|
||||
|
@ -23,7 +23,7 @@ from tqdm import tqdm
|
||||
import ultralytics.yolo.utils as utils
|
||||
from ultralytics import __version__
|
||||
from ultralytics.nn.tasks import attempt_load_one_weight
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.utils import (DEFAULT_CFG_PATH, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr,
|
||||
yaml_save)
|
||||
@ -79,7 +79,7 @@ class BaseTrainer:
|
||||
config (str, optional): Path to a configuration file. Defaults to DEFAULT_CONFIG.
|
||||
overrides (dict, optional): Configuration overrides. Defaults to None.
|
||||
"""
|
||||
self.args = get_config(config, overrides)
|
||||
self.args = get_cfg(config, overrides)
|
||||
self.device = utils.torch_utils.select_device(self.args.device, self.args.batch)
|
||||
self.check_resume()
|
||||
self.console = LOGGER
|
||||
@ -509,7 +509,7 @@ class BaseTrainer:
|
||||
assert args_yaml.is_file(), \
|
||||
FileNotFoundError('Resume checkpoint f{last} not found. '
|
||||
'Please pass a valid checkpoint to resume from, i.e. yolo resume=path/to/last.pt')
|
||||
args = get_config(args_yaml) # replace
|
||||
args = get_cfg(args_yaml) # replace
|
||||
args.model, resume = str(last), True # reinstate
|
||||
self.args = args
|
||||
self.resume = resume
|
||||
|
@ -8,7 +8,7 @@ import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.nn.autobackend import AutoBackend
|
||||
from ultralytics.yolo.configs import get_config
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG_PATH, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks
|
||||
from ultralytics.yolo.utils.checks import check_imgsz
|
||||
@ -52,7 +52,7 @@ class BaseValidator:
|
||||
self.dataloader = dataloader
|
||||
self.pbar = pbar
|
||||
self.logger = logger or LOGGER
|
||||
self.args = args or get_config(DEFAULT_CFG_PATH)
|
||||
self.args = args or get_cfg(DEFAULT_CFG_PATH)
|
||||
self.model = None
|
||||
self.data = None
|
||||
self.device = None
|
||||
|
@ -23,7 +23,7 @@ import yaml
|
||||
# Constants
|
||||
FILE = Path(__file__).resolve()
|
||||
ROOT = FILE.parents[2] # YOLO
|
||||
DEFAULT_CFG_PATH = ROOT / "yolo/configs/default.yaml"
|
||||
DEFAULT_CFG_PATH = ROOT / "yolo/cfg/default.yaml"
|
||||
RANK = int(os.getenv('RANK', -1))
|
||||
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
||||
AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
||||
|
@ -26,7 +26,7 @@ def on_pretrain_routine_start(trainer):
|
||||
output_uri=True,
|
||||
reuse_last_task_id=False,
|
||||
auto_connect_frameworks={'pytorch': False})
|
||||
task.connect(dict(trainer.args), name='General')
|
||||
task.connect(vars(trainer.args), name='General')
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
|
@ -11,7 +11,7 @@ except (ModuleNotFoundError, ImportError):
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
experiment = comet_ml.Experiment(project_name=trainer.args.project or "YOLOv8")
|
||||
experiment.log_parameters(dict(trainer.args))
|
||||
experiment.log_parameters(vars(trainer.args))
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
|
@ -137,9 +137,10 @@ def model_info(model, verbose=False, imgsz=640):
|
||||
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||
|
||||
flops = get_flops(model, imgsz)
|
||||
fused = ' (fused)' if model.is_fused() else ''
|
||||
fs = f', {flops:.1f} GFLOPs' if flops else ''
|
||||
m = Path(getattr(model, 'yaml_file', '') or model.yaml.get('yaml_file', '')).stem.replace('yolo', 'YOLO') or 'Model'
|
||||
LOGGER.info(f"{m} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||
LOGGER.info(f"{m} summary{fused}: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||
|
||||
|
||||
def get_num_params(model):
|
||||
|
@ -18,7 +18,7 @@ class ClassificationPredictor(BasePredictor):
|
||||
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
||||
return img
|
||||
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape
|
||||
|
@ -19,12 +19,13 @@ class DetectionPredictor(BasePredictor):
|
||||
img /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
return img
|
||||
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det)
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
|
@ -10,14 +10,15 @@ from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
||||
|
||||
class SegmentationPredictor(DetectionPredictor):
|
||||
|
||||
def postprocess(self, preds, img, orig_img):
|
||||
def postprocess(self, preds, img, orig_img, classes=None):
|
||||
# TODO: filter by classes
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
nm=32)
|
||||
nm=32,
|
||||
classes=self.args.classes)
|
||||
results = []
|
||||
proto = preds[1][-1]
|
||||
for i, pred in enumerate(p):
|
||||
|
Loading…
x
Reference in New Issue
Block a user