mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-24 06:14:55 +08:00
Allow setting model attributes before training (#45)
This commit is contained in:
parent
832ea56eb4
commit
db1031a1a9
@ -133,6 +133,7 @@ class BaseTrainer:
|
|||||||
"""
|
"""
|
||||||
Builds dataloaders and optimizer on correct rank process
|
Builds dataloaders and optimizer on correct rank process
|
||||||
"""
|
"""
|
||||||
|
self.set_model_attributes()
|
||||||
self.optimizer = build_optimizer(model=self.model,
|
self.optimizer = build_optimizer(model=self.model,
|
||||||
name=self.args.optimizer,
|
name=self.args.optimizer,
|
||||||
lr=self.args.lr0,
|
lr=self.args.lr0,
|
||||||
@ -146,19 +147,6 @@ class BaseTrainer:
|
|||||||
print("created testloader :", rank)
|
print("created testloader :", rank)
|
||||||
self.console.info(self.progress_string())
|
self.console.info(self.progress_string())
|
||||||
|
|
||||||
def _set_model_attributes(self):
|
|
||||||
# TODO: fix and use after self.data_dict is available
|
|
||||||
'''
|
|
||||||
head = utils.torch_utils.de_parallel(self.model).model[-1]
|
|
||||||
self.args.box *= 3 / head.nl # scale to layers
|
|
||||||
self.args.cls *= head.nc / 80 * 3 / head.nl # scale to classes and layers
|
|
||||||
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
|
||||||
model.nc = nc # attach number of classes to model
|
|
||||||
model.hyp = hyp # attach hyperparameters to model
|
|
||||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
|
||||||
model.names = names
|
|
||||||
'''
|
|
||||||
|
|
||||||
def _do_train(self, rank, world_size):
|
def _do_train(self, rank, world_size):
|
||||||
if world_size > 1:
|
if world_size > 1:
|
||||||
self._setup_ddp(rank, world_size)
|
self._setup_ddp(rank, world_size)
|
||||||
@ -302,6 +290,12 @@ class BaseTrainer:
|
|||||||
if not self.best_fitness or self.best_fitness < self.fitness:
|
if not self.best_fitness or self.best_fitness < self.fitness:
|
||||||
self.best_fitness = self.fitness
|
self.best_fitness = self.fitness
|
||||||
|
|
||||||
|
def set_model_attributes(self):
|
||||||
|
"""
|
||||||
|
To set or update model parameters before training.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
def build_targets(self, preds, targets):
|
def build_targets(self, preds, targets):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@ -54,6 +54,16 @@ class SegmentationTrainer(BaseTrainer):
|
|||||||
model.load(weights)
|
model.load(weights)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
def set_model_attributes(self):
|
||||||
|
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
|
||||||
|
self.args.box *= 3 / nl # scale to layers
|
||||||
|
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
||||||
|
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||||
|
self.model.nc = self.data["nc"] # attach number of classes to model
|
||||||
|
self.model.args = self.args # attach hyperparameters to model
|
||||||
|
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||||
|
self.model.names = self.data["names"]
|
||||||
|
|
||||||
def get_validator(self):
|
def get_validator(self):
|
||||||
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
|
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user