mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Allow setting model attributes before training (#45)
This commit is contained in:
parent
832ea56eb4
commit
db1031a1a9
@ -133,6 +133,7 @@ class BaseTrainer:
|
||||
"""
|
||||
Builds dataloaders and optimizer on correct rank process
|
||||
"""
|
||||
self.set_model_attributes()
|
||||
self.optimizer = build_optimizer(model=self.model,
|
||||
name=self.args.optimizer,
|
||||
lr=self.args.lr0,
|
||||
@ -146,19 +147,6 @@ class BaseTrainer:
|
||||
print("created testloader :", rank)
|
||||
self.console.info(self.progress_string())
|
||||
|
||||
def _set_model_attributes(self):
|
||||
# TODO: fix and use after self.data_dict is available
|
||||
'''
|
||||
head = utils.torch_utils.de_parallel(self.model).model[-1]
|
||||
self.args.box *= 3 / head.nl # scale to layers
|
||||
self.args.cls *= head.nc / 80 * 3 / head.nl # scale to classes and layers
|
||||
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
model.nc = nc # attach number of classes to model
|
||||
model.hyp = hyp # attach hyperparameters to model
|
||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||
model.names = names
|
||||
'''
|
||||
|
||||
def _do_train(self, rank, world_size):
|
||||
if world_size > 1:
|
||||
self._setup_ddp(rank, world_size)
|
||||
@ -302,6 +290,12 @@ class BaseTrainer:
|
||||
if not self.best_fitness or self.best_fitness < self.fitness:
|
||||
self.best_fitness = self.fitness
|
||||
|
||||
def set_model_attributes(self):
|
||||
"""
|
||||
To set or update model parameters before training.
|
||||
"""
|
||||
pass
|
||||
|
||||
def build_targets(self, preds, targets):
|
||||
pass
|
||||
|
||||
|
@ -54,6 +54,16 @@ class SegmentationTrainer(BaseTrainer):
|
||||
model.load(weights)
|
||||
return model
|
||||
|
||||
def set_model_attributes(self):
|
||||
nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps)
|
||||
self.args.box *= 3 / nl # scale to layers
|
||||
self.args.cls *= self.data["nc"] / 80 * 3 / nl # scale to classes and layers
|
||||
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
self.model.nc = self.data["nc"] # attach number of classes to model
|
||||
self.model.args = self.args # attach hyperparameters to model
|
||||
# TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
|
||||
self.model.names = self.data["names"]
|
||||
|
||||
def get_validator(self):
|
||||
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user