mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Segmentation support & other enchancements (#40)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
c617ee1c79
commit
f56c9bcc26
16
.github/workflows/ci.yaml
vendored
16
.github/workflows/ci.yaml
vendored
@ -21,7 +21,8 @@ jobs:
|
||||
os: [ ubuntu-latest ]
|
||||
python-version: [ '3.10' ]
|
||||
model: [ yolov5n ]
|
||||
include:
|
||||
torch: [ latest ]
|
||||
# include:
|
||||
# - os: ubuntu-latest
|
||||
# python-version: '3.7' # '3.6.8' min
|
||||
# model: yolov5n
|
||||
@ -31,10 +32,10 @@ jobs:
|
||||
# - os: ubuntu-latest
|
||||
# python-version: '3.9'
|
||||
# model: yolov5n
|
||||
- os: ubuntu-latest
|
||||
python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
|
||||
model: yolov5n
|
||||
torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/
|
||||
# - os: ubuntu-latest
|
||||
# python-version: '3.8' # torch 1.7.0 requires python >=3.6, <=3.8
|
||||
# model: yolov5n
|
||||
# torch: '1.7.0' # min torch version CI https://pypi.org/project/torchvision/
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
@ -93,9 +94,8 @@ jobs:
|
||||
- name: Test segmentation
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
echo "TODO"
|
||||
python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-segments epochs=1 img_size=64
|
||||
- name: Test classification
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
echo "TODO"
|
||||
# python ultralytics/yolo/v8/classify/train.py model=resnet18 data=mnist2560 epochs=1 img_size=64
|
||||
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=mnist160 epochs=1 img_size=32
|
||||
|
@ -1,6 +1,7 @@
|
||||
from itertools import repeat
|
||||
from multiprocessing.pool import Pool
|
||||
from pathlib import Path
|
||||
from typing import OrderedDict
|
||||
|
||||
import torchvision
|
||||
from tqdm import tqdm
|
||||
@ -205,7 +206,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
|
||||
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
|
||||
else:
|
||||
sample = self.torch_transforms(im)
|
||||
return sample, j
|
||||
return OrderedDict(img=sample, cls=j)
|
||||
|
||||
|
||||
# TODO: support semantic segmentation
|
||||
|
@ -1,12 +1,17 @@
|
||||
"""
|
||||
Simple training loop; Boilerplate that could apply to any arbitrary neural network,
|
||||
"""
|
||||
# TODOs
|
||||
# 1. finish _set_model_attributes
|
||||
# 2. allow num_class update for both pretrained and csv_loaded models
|
||||
# 3. save
|
||||
|
||||
import os
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from telnetlib import TLS
|
||||
from typing import Dict, Union
|
||||
|
||||
import torch
|
||||
@ -52,6 +57,8 @@ class BaseTrainer:
|
||||
|
||||
# Model and Dataloaders.
|
||||
self.trainset, self.testset = self.get_dataset(self.args.data)
|
||||
if self.args.cfg is not None:
|
||||
self.model = self.load_cfg(self.args.cfg)
|
||||
if self.args.model is not None:
|
||||
self.model = self.get_model(self.args.model, self.args.pretrained).to(self.device)
|
||||
|
||||
@ -133,6 +140,20 @@ class BaseTrainer:
|
||||
self.test_loader = self.get_dataloader(self.testset, batch_size=self.args.batch_size * 2, rank=rank)
|
||||
self.validator = self.get_validator()
|
||||
print("created testloader :", rank)
|
||||
self.console.info(self.progress_string())
|
||||
|
||||
def _set_model_attributes(self):
|
||||
# TODO: fix and use after self.data_dict is available
|
||||
'''
|
||||
head = utils.torch_utils.de_parallel(self.model).model[-1]
|
||||
self.args.box *= 3 / head.nl # scale to layers
|
||||
self.args.cls *= head.nc / 80 * 3 / head.nl # scale to classes and layers
|
||||
self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers
|
||||
model.nc = nc # attach number of classes to model
|
||||
model.hyp = hyp # attach hyperparameters to model
|
||||
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||
model.names = names
|
||||
'''
|
||||
|
||||
def _do_train(self, rank, world_size):
|
||||
if world_size > 1:
|
||||
@ -153,13 +174,17 @@ class BaseTrainer:
|
||||
pbar = tqdm(enumerate(self.train_loader),
|
||||
total=len(self.train_loader),
|
||||
bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
|
||||
tloss = 0
|
||||
for i, (images, labels) in pbar:
|
||||
tloss = None
|
||||
for i, batch in pbar:
|
||||
# img, label (classification)/ img, targets, paths, _, masks(detection)
|
||||
# callback hook. on_batch_start
|
||||
# forward
|
||||
images, labels = self.preprocess_batch(images, labels)
|
||||
self.loss = self.criterion(self.model(images), labels)
|
||||
tloss = (tloss * i + self.loss.item()) / (i + 1)
|
||||
batch = self.preprocess_batch(batch)
|
||||
|
||||
# TODO: warmup, multiscale
|
||||
preds = self.model(batch["img"])
|
||||
self.loss, self.loss_items = self.criterion(preds, batch)
|
||||
tloss = (tloss * i + self.loss_items) / (i + 1) if tloss is not None else self.loss_items
|
||||
|
||||
# backward
|
||||
self.model.zero_grad(set_to_none=True)
|
||||
@ -170,9 +195,13 @@ class BaseTrainer:
|
||||
self.trigger_callbacks('on_batch_end')
|
||||
|
||||
# log
|
||||
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||||
mem = (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||||
loss_len = tloss.shape[0] if len(tloss.size()) else 1
|
||||
losses = tloss if loss_len > 1 else torch.unsqueeze(tloss, 0)
|
||||
if rank in {-1, 0}:
|
||||
pbar.desc = f"{f'{epoch + 1}/{self.args.epochs}':>10}{mem:>10}{tloss:>12.3g}" + ' ' * 36
|
||||
pbar.set_description(
|
||||
(" {} " + "{:.3f} " * (2 + loss_len)).format(f'{epoch + 1}/{self.args.epochs}', mem, *losses,
|
||||
batch["img"].shape[-1]))
|
||||
|
||||
if rank in [-1, 0]:
|
||||
# validation
|
||||
@ -240,6 +269,9 @@ class BaseTrainer:
|
||||
|
||||
return model
|
||||
|
||||
def load_cfg(self, cfg):
|
||||
raise NotImplementedError("This task trainer doesn't support loading cfg files")
|
||||
|
||||
def get_validator(self):
|
||||
pass
|
||||
|
||||
@ -250,11 +282,11 @@ class BaseTrainer:
|
||||
self.scaler.update()
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
def preprocess_batch(self, images, labels):
|
||||
def preprocess_batch(self, batch):
|
||||
"""
|
||||
Allows custom preprocessing model inputs and ground truths depending on task type
|
||||
"""
|
||||
return images.to(self.device, non_blocking=True), labels.to(self.device)
|
||||
return batch
|
||||
|
||||
def validate(self):
|
||||
"""
|
||||
@ -270,14 +302,17 @@ class BaseTrainer:
|
||||
def build_targets(self, preds, targets):
|
||||
pass
|
||||
|
||||
def criterion(self, preds, targets):
|
||||
def criterion(self, preds, batch):
|
||||
"""
|
||||
Returns loss and individual loss items as Tensor
|
||||
"""
|
||||
pass
|
||||
|
||||
def progress_string(self):
|
||||
"""
|
||||
Returns progress string depending on task type.
|
||||
"""
|
||||
pass
|
||||
return ''
|
||||
|
||||
def usage_help(self):
|
||||
"""
|
||||
|
@ -1,8 +1,10 @@
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
||||
from ultralytics.yolo.utils.ops import Profile
|
||||
from ultralytics.yolo.utils.torch_utils import select_device
|
||||
|
||||
@ -12,12 +14,15 @@ class BaseValidator:
|
||||
Base validator class.
|
||||
"""
|
||||
|
||||
def __init__(self, dataloader, device='', half=False, pbar=None, logger=None):
|
||||
def __init__(self, dataloader, pbar=None, logger=None, args=None):
|
||||
self.dataloader = dataloader
|
||||
self.half = half
|
||||
self.device = select_device(device, dataloader.batch_size)
|
||||
self.pbar = pbar
|
||||
self.logger = logger or logging.getLogger()
|
||||
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
|
||||
self.device = select_device(self.args.device, dataloader.batch_size)
|
||||
self.cuda = self.device.type != 'cpu'
|
||||
self.batch_i = None
|
||||
self.training = True
|
||||
|
||||
def __call__(self, trainer=None, model=None):
|
||||
"""
|
||||
@ -25,45 +30,48 @@ class BaseValidator:
|
||||
if trainer is passed (trainer gets priority).
|
||||
"""
|
||||
training = trainer is not None
|
||||
self.training = training
|
||||
# trainer = trainer or self.trainer_class.get_trainer()
|
||||
assert training or model is not None, "Either trainer or model is needed for validation"
|
||||
if training:
|
||||
model = trainer.model
|
||||
self.half &= self.device.type != 'cpu'
|
||||
model = model.half() if self.half else model
|
||||
self.args.half &= self.device.type != 'cpu'
|
||||
model = model.half() if self.args.half else model
|
||||
else: # TODO: handle this when detectMultiBackend is supported
|
||||
# model = DetectMultiBacked(model)
|
||||
pass
|
||||
# TODO: implement init_model_attributes()
|
||||
|
||||
model.eval()
|
||||
dt = Profile(), Profile(), Profile(), Profile()
|
||||
loss = 0
|
||||
n_batches = len(self.dataloader)
|
||||
desc = self.set_desc()
|
||||
desc = self.get_desc()
|
||||
bar = tqdm(self.dataloader, desc, n_batches, not training, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
|
||||
self.init_metrics()
|
||||
self.init_metrics(model)
|
||||
with torch.cuda.amp.autocast(enabled=self.device.type != 'cpu'):
|
||||
for images, labels in bar:
|
||||
for batch_i, batch in enumerate(bar):
|
||||
self.batch_i = batch_i
|
||||
# pre-process
|
||||
with dt[0]:
|
||||
images, labels = self.preprocess_batch(images, labels)
|
||||
batch = self.preprocess_batch(batch)
|
||||
|
||||
# inference
|
||||
with dt[1]:
|
||||
preds = model(images)
|
||||
preds = model(batch["img"])
|
||||
# TODO: remember to add native augmentation support when implementing model, like:
|
||||
# preds, train_out = model(im, augment=augment)
|
||||
|
||||
# loss
|
||||
with dt[2]:
|
||||
if training:
|
||||
loss += trainer.criterion(preds, labels) / images.shape[0]
|
||||
loss += trainer.criterion(preds, batch)[0]
|
||||
|
||||
# pre-process predictions
|
||||
with dt[3]:
|
||||
preds = self.preprocess_preds(preds)
|
||||
|
||||
self.update_metrics(preds, labels)
|
||||
self.update_metrics(preds, batch)
|
||||
|
||||
stats = self.get_stats()
|
||||
self.check_stats(stats)
|
||||
@ -81,8 +89,8 @@ class BaseValidator:
|
||||
|
||||
return stats
|
||||
|
||||
def preprocess_batch(self, images, labels):
|
||||
return images.to(self.device, non_blocking=True), labels.to(self.device)
|
||||
def preprocess_batch(self, batch):
|
||||
return batch
|
||||
|
||||
def preprocess_preds(self, preds):
|
||||
return preds
|
||||
@ -90,7 +98,7 @@ class BaseValidator:
|
||||
def init_metrics(self):
|
||||
pass
|
||||
|
||||
def update_metrics(self, preds, targets):
|
||||
def update_metrics(self, preds, batch):
|
||||
pass
|
||||
|
||||
def get_stats(self):
|
||||
@ -102,5 +110,5 @@ class BaseValidator:
|
||||
def print_results(self):
|
||||
pass
|
||||
|
||||
def set_desc(self):
|
||||
def get_desc(self):
|
||||
pass
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
# Train settings -------------------------------------------------------------------------------------------------------
|
||||
model: null # i.e. yolov5s.pt
|
||||
cfg: null # i.e. yolov5s.yaml
|
||||
data: null # i.e. coco128.yaml
|
||||
epochs: 300
|
||||
batch_size: 16
|
||||
@ -20,6 +21,23 @@ optimizer: 'SGD' # choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
|
||||
verbose: False
|
||||
seed: 0
|
||||
local_rank: -1
|
||||
single_cls: False # train multi-class data as single-class
|
||||
image_weights: False # use weighted image selection for training
|
||||
shuffle: True
|
||||
rect: False # support rectangular training
|
||||
overlap_mask: True # Segmentation masks overlap
|
||||
mask_ratio: 4 # Segmentation mask downsample ratio
|
||||
|
||||
# Val/Test settings ----------------------------------------------------------------------------------------------------
|
||||
save_json: False
|
||||
save_hybrid: False
|
||||
conf_thres: 0.001
|
||||
iou_thres: 0.6
|
||||
max_det: 300
|
||||
half: True
|
||||
plots: False
|
||||
save_txt: False
|
||||
task: 'val'
|
||||
|
||||
# Hyperparameters ------------------------------------------------------------------------------------------------------
|
||||
lr0: 0.001 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||
@ -51,6 +69,7 @@ fliplr: 0.5 # image flip left-right (probability)
|
||||
mosaic: 1.0 # image mosaic (probability)
|
||||
mixup: 0.0 # image mixup (probability)
|
||||
copy_paste: 0.0 # segment copy-paste (probability)
|
||||
label_smoothing: 0.0
|
||||
|
||||
# Hydra configs --------------------------------------------------------------------------------------------------------
|
||||
hydra:
|
||||
|
@ -2,11 +2,19 @@
|
||||
"""
|
||||
Model validation metrics
|
||||
"""
|
||||
import math
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ultralytics.yolo.utils import TryExcept
|
||||
|
||||
|
||||
# boxes
|
||||
def box_area(box):
|
||||
# box = xyxy(4,n)
|
||||
return (box[2] - box[0]) * (box[3] - box[1])
|
||||
@ -53,3 +61,484 @@ def box_iou(box1, box2, eps=1e-7):
|
||||
|
||||
# IoU = inter / (area1 + area2 - inter)
|
||||
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps)
|
||||
|
||||
|
||||
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
||||
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
||||
|
||||
# Get the coordinates of bounding boxes
|
||||
if xywh: # transform from xywh to xyxy
|
||||
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
|
||||
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
||||
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
||||
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
||||
else: # x1, y1, x2, y2 = box1
|
||||
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
|
||||
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
|
||||
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
||||
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
||||
|
||||
# Intersection area
|
||||
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
||||
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
||||
|
||||
# Union Area
|
||||
union = w1 * h1 + w2 * h2 - inter + eps
|
||||
|
||||
# IoU
|
||||
iou = inter / union
|
||||
if CIoU or DIoU or GIoU:
|
||||
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
||||
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
||||
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||||
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
||||
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
||||
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||||
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
||||
with torch.no_grad():
|
||||
alpha = v / (v - iou + (1 + eps))
|
||||
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||||
return iou - rho2 / c2 # DIoU
|
||||
c_area = cw * ch + eps # convex area
|
||||
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
||||
return iou # IoU
|
||||
|
||||
|
||||
def mask_iou(mask1, mask2, eps=1e-7):
|
||||
"""
|
||||
mask1: [N, n] m1 means number of predicted objects
|
||||
mask2: [M, n] m2 means number of gt objects
|
||||
Note: n means image_w x image_h
|
||||
return: masks iou, [N, M]
|
||||
"""
|
||||
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
||||
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
||||
return intersection / (union + eps)
|
||||
|
||||
|
||||
def masks_iou(mask1, mask2, eps=1e-7):
|
||||
"""
|
||||
mask1: [N, n] m1 means number of predicted objects
|
||||
mask2: [N, n] m2 means number of gt objects
|
||||
Note: n means image_w x image_h
|
||||
return: masks iou, (N, )
|
||||
"""
|
||||
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
|
||||
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
|
||||
return intersection / (union + eps)
|
||||
|
||||
|
||||
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||
# return positive, negative label smoothing BCE targets
|
||||
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||
|
||||
|
||||
# losses
|
||||
class FocalLoss(nn.Module):
|
||||
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||
super().__init__()
|
||||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||
self.gamma = gamma
|
||||
self.alpha = alpha
|
||||
self.reduction = loss_fcn.reduction
|
||||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||
|
||||
def forward(self, pred, true):
|
||||
loss = self.loss_fcn(pred, true)
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||
loss *= alpha_factor * modulating_factor
|
||||
|
||||
if self.reduction == 'mean':
|
||||
return loss.mean()
|
||||
elif self.reduction == 'sum':
|
||||
return loss.sum()
|
||||
else: # 'none'
|
||||
return loss
|
||||
|
||||
|
||||
class ConfusionMatrix:
|
||||
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||
self.nc = nc # number of classes
|
||||
self.conf = conf
|
||||
self.iou_thres = iou_thres
|
||||
|
||||
def process_batch(self, detections, labels):
|
||||
"""
|
||||
Return intersection-over-union (Jaccard index) of boxes.
|
||||
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||
Arguments:
|
||||
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||
Returns:
|
||||
None, updates confusion matrix accordingly
|
||||
"""
|
||||
if detections is None:
|
||||
gt_classes = labels.int()
|
||||
for gc in gt_classes:
|
||||
self.matrix[self.nc, gc] += 1 # background FN
|
||||
return
|
||||
|
||||
detections = detections[detections[:, 4] > self.conf]
|
||||
gt_classes = labels[:, 0].int()
|
||||
detection_classes = detections[:, 5].int()
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
|
||||
x = torch.where(iou > self.iou_thres)
|
||||
if x[0].shape[0]:
|
||||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
||||
if x[0].shape[0] > 1:
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
else:
|
||||
matches = np.zeros((0, 3))
|
||||
|
||||
n = matches.shape[0] > 0
|
||||
m0, m1, _ = matches.transpose().astype(int)
|
||||
for i, gc in enumerate(gt_classes):
|
||||
j = m0 == i
|
||||
if n and sum(j) == 1:
|
||||
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
||||
else:
|
||||
self.matrix[self.nc, gc] += 1 # true background
|
||||
|
||||
if n:
|
||||
for i, dc in enumerate(detection_classes):
|
||||
if not any(m1 == i):
|
||||
self.matrix[dc, self.nc] += 1 # predicted background
|
||||
|
||||
def matrix(self):
|
||||
return self.matrix
|
||||
|
||||
def tp_fp(self):
|
||||
tp = self.matrix.diagonal() # true positives
|
||||
fp = self.matrix.sum(1) - tp # false positives
|
||||
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
||||
return tp[:-1], fp[:-1] # remove background class
|
||||
|
||||
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
||||
def plot(self, normalize=True, save_dir='', names=()):
|
||||
import seaborn as sn
|
||||
|
||||
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
||||
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
||||
nc, nn = self.nc, len(names) # number of classes, names
|
||||
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
||||
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
||||
ticklabels = (names + ['background']) if labels else "auto"
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
||||
sn.heatmap(array,
|
||||
ax=ax,
|
||||
annot=nc < 30,
|
||||
annot_kws={
|
||||
"size": 8},
|
||||
cmap='Blues',
|
||||
fmt='.2f',
|
||||
square=True,
|
||||
vmin=0.0,
|
||||
xticklabels=ticklabels,
|
||||
yticklabels=ticklabels).set_facecolor((1, 1, 1))
|
||||
ax.set_ylabel('True')
|
||||
ax.set_ylabel('Predicted')
|
||||
ax.set_title('Confusion Matrix')
|
||||
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||
plt.close(fig)
|
||||
|
||||
def print(self):
|
||||
for i in range(self.nc + 1):
|
||||
print(' '.join(map(str, self.matrix[i])))
|
||||
|
||||
|
||||
def fitness_detection(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||
return (x[:, :4] * w).sum(1)
|
||||
|
||||
|
||||
def fitness_segmentation(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
|
||||
return (x[:, :8] * w).sum(1)
|
||||
|
||||
|
||||
def smooth(y, f=0.05):
|
||||
# Box filter of fraction f
|
||||
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
||||
p = np.ones(nf // 2) # ones padding
|
||||
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
||||
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
||||
|
||||
|
||||
def compute_ap(recall, precision):
|
||||
""" Compute the average precision, given the recall and precision curves
|
||||
# Arguments
|
||||
recall: The recall curve (list)
|
||||
precision: The precision curve (list)
|
||||
# Returns
|
||||
Average precision, precision curve, recall curve
|
||||
"""
|
||||
|
||||
# Append sentinel values to beginning and end
|
||||
mrec = np.concatenate(([0.0], recall, [1.0]))
|
||||
mpre = np.concatenate(([1.0], precision, [0.0]))
|
||||
|
||||
# Compute the precision envelope
|
||||
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||
|
||||
# Integrate area under curve
|
||||
method = 'interp' # methods: 'continuous', 'interp'
|
||||
if method == 'interp':
|
||||
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||
else: # 'continuous'
|
||||
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||
|
||||
return ap, mpre, mrec
|
||||
|
||||
|
||||
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
|
||||
""" Compute the average precision, given the recall and precision curves.
|
||||
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||
# Arguments
|
||||
tp: True positives (nparray, nx1 or nx10).
|
||||
conf: Objectness value from 0-1 (nparray).
|
||||
pred_cls: Predicted object classes (nparray).
|
||||
target_cls: True object classes (nparray).
|
||||
plot: Plot precision-recall curve at mAP@0.5
|
||||
save_dir: Plot save directory
|
||||
# Returns
|
||||
The average precision as computed in py-faster-rcnn.
|
||||
"""
|
||||
|
||||
# Sort by objectness
|
||||
i = np.argsort(-conf)
|
||||
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||
|
||||
# Find unique classes
|
||||
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
||||
nc = unique_classes.shape[0] # number of classes, number of detections
|
||||
|
||||
# Create Precision-Recall curve and compute AP for each class
|
||||
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
||||
for ci, c in enumerate(unique_classes):
|
||||
i = pred_cls == c
|
||||
n_l = nt[ci] # number of labels
|
||||
n_p = i.sum() # number of predictions
|
||||
if n_p == 0 or n_l == 0:
|
||||
continue
|
||||
|
||||
# Accumulate FPs and TPs
|
||||
fpc = (1 - tp[i]).cumsum(0)
|
||||
tpc = tp[i].cumsum(0)
|
||||
|
||||
# Recall
|
||||
recall = tpc / (n_l + eps) # recall curve
|
||||
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
||||
|
||||
# Precision
|
||||
precision = tpc / (tpc + fpc) # precision curve
|
||||
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
||||
|
||||
# AP from recall-precision curve
|
||||
for j in range(tp.shape[1]):
|
||||
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||
if plot and j == 0:
|
||||
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||
|
||||
# Compute F1 (harmonic mean of precision and recall)
|
||||
f1 = 2 * p * r / (p + r + eps)
|
||||
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
||||
names = dict(enumerate(names)) # to dict
|
||||
# TODO: plot
|
||||
'''
|
||||
if plot:
|
||||
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
|
||||
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
|
||||
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
|
||||
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
|
||||
'''
|
||||
|
||||
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
||||
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
||||
tp = (r * nt).round() # true positives
|
||||
fp = (tp / (p + eps) - tp).round() # false positives
|
||||
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
||||
|
||||
|
||||
def ap_per_class_box_and_mask(
|
||||
tp_m,
|
||||
tp_b,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=False,
|
||||
save_dir=".",
|
||||
names=(),
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
tp_b: tp of boxes.
|
||||
tp_m: tp of masks.
|
||||
other arguments see `func: ap_per_class`.
|
||||
"""
|
||||
results_boxes = ap_per_class(tp_b,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=plot,
|
||||
save_dir=save_dir,
|
||||
names=names,
|
||||
prefix="Box")[2:]
|
||||
results_masks = ap_per_class(tp_m,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=plot,
|
||||
save_dir=save_dir,
|
||||
names=names,
|
||||
prefix="Mask")[2:]
|
||||
|
||||
results = {
|
||||
"boxes": {
|
||||
"p": results_boxes[0],
|
||||
"r": results_boxes[1],
|
||||
"ap": results_boxes[3],
|
||||
"f1": results_boxes[2],
|
||||
"ap_class": results_boxes[4]},
|
||||
"masks": {
|
||||
"p": results_masks[0],
|
||||
"r": results_masks[1],
|
||||
"ap": results_masks[3],
|
||||
"f1": results_masks[2],
|
||||
"ap_class": results_masks[4]}}
|
||||
return results
|
||||
|
||||
|
||||
class Metric:
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.p = [] # (nc, )
|
||||
self.r = [] # (nc, )
|
||||
self.f1 = [] # (nc, )
|
||||
self.all_ap = [] # (nc, 10)
|
||||
self.ap_class_index = [] # (nc, )
|
||||
|
||||
@property
|
||||
def ap50(self):
|
||||
"""AP@0.5 of all classes.
|
||||
Return:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap[:, 0] if len(self.all_ap) else []
|
||||
|
||||
@property
|
||||
def ap(self):
|
||||
"""AP@0.5:0.95
|
||||
Return:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap.mean(1) if len(self.all_ap) else []
|
||||
|
||||
@property
|
||||
def mp(self):
|
||||
"""mean precision of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.p.mean() if len(self.p) else 0.0
|
||||
|
||||
@property
|
||||
def mr(self):
|
||||
"""mean recall of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.r.mean() if len(self.r) else 0.0
|
||||
|
||||
@property
|
||||
def map50(self):
|
||||
"""Mean AP@0.5 of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
||||
|
||||
@property
|
||||
def map(self):
|
||||
"""Mean AP@0.5:0.95 of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
||||
|
||||
def mean_results(self):
|
||||
"""Mean of results, return mp, mr, map50, map"""
|
||||
return (self.mp, self.mr, self.map50, self.map)
|
||||
|
||||
def class_result(self, i):
|
||||
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
|
||||
return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
|
||||
|
||||
def get_maps(self, nc):
|
||||
maps = np.zeros(nc) + self.map
|
||||
for i, c in enumerate(self.ap_class_index):
|
||||
maps[c] = self.ap[i]
|
||||
return maps
|
||||
|
||||
def update(self, results):
|
||||
"""
|
||||
Args:
|
||||
results: tuple(p, r, ap, f1, ap_class)
|
||||
"""
|
||||
p, r, all_ap, f1, ap_class_index = results
|
||||
self.p = p
|
||||
self.r = r
|
||||
self.all_ap = all_ap
|
||||
self.f1 = f1
|
||||
self.ap_class_index = ap_class_index
|
||||
|
||||
|
||||
class Metrics:
|
||||
"""Metric for boxes and masks."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.metric_box = Metric()
|
||||
self.metric_mask = Metric()
|
||||
|
||||
def update(self, results):
|
||||
"""
|
||||
Args:
|
||||
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
|
||||
"""
|
||||
self.metric_box.update(list(results["boxes"].values()))
|
||||
self.metric_mask.update(list(results["masks"].values()))
|
||||
|
||||
def mean_results(self):
|
||||
return self.metric_box.mean_results() + self.metric_mask.mean_results()
|
||||
|
||||
def class_result(self, i):
|
||||
return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
|
||||
|
||||
def get_maps(self, nc):
|
||||
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
|
||||
|
||||
@property
|
||||
def ap_class_index(self):
|
||||
# boxes and masks have the same ap_class_index
|
||||
return self.metric_box.ap_class_index
|
||||
|
@ -5,6 +5,7 @@ import time
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER
|
||||
@ -32,14 +33,23 @@ class Profile(contextlib.ContextDecorator):
|
||||
return time.time()
|
||||
|
||||
|
||||
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
||||
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
||||
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
||||
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
||||
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
||||
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
||||
return [
|
||||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
||||
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
||||
|
||||
|
||||
def segment2box(segment, width=640, height=640):
|
||||
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
||||
x, y = segment.T # segment xy
|
||||
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
||||
x, y, = (
|
||||
x[inside],
|
||||
y[inside],
|
||||
)
|
||||
x, y, = x[inside], y[inside]
|
||||
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros(4) # xyxy
|
||||
|
||||
|
||||
@ -304,3 +314,63 @@ def resample_segments(segments, n=1000):
|
||||
xp = np.arange(len(s))
|
||||
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
||||
return segments
|
||||
|
||||
|
||||
def crop_mask(masks, boxes):
|
||||
"""
|
||||
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
|
||||
Vectorized by Chong (thanks Chong).
|
||||
Args:
|
||||
- masks should be a size [h, w, n] tensor of masks
|
||||
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
|
||||
"""
|
||||
|
||||
n, h, w = masks.shape
|
||||
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
|
||||
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
|
||||
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
|
||||
|
||||
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
||||
|
||||
|
||||
def process_mask_upsample(protos, masks_in, bboxes, shape):
|
||||
"""
|
||||
Crop after upsample.
|
||||
proto_out: [mask_dim, mask_h, mask_w]
|
||||
out_masks: [n, mask_dim], n is number of masks after nms
|
||||
bboxes: [n, 4], n is number of masks after nms
|
||||
shape:input_image_size, (h, w)
|
||||
return: h, w, n
|
||||
"""
|
||||
|
||||
c, mh, mw = protos.shape # CHW
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||||
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||||
masks = crop_mask(masks, bboxes) # CHW
|
||||
return masks.gt_(0.5)
|
||||
|
||||
|
||||
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
||||
"""
|
||||
Crop before upsample.
|
||||
proto_out: [mask_dim, mask_h, mask_w]
|
||||
out_masks: [n, mask_dim], n is number of masks after nms
|
||||
bboxes: [n, 4], n is number of masks after nms
|
||||
shape:input_image_size, (h, w)
|
||||
return: h, w, n
|
||||
"""
|
||||
|
||||
c, mh, mw = protos.shape # CHW
|
||||
ih, iw = shape
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
||||
|
||||
downsampled_bboxes = bboxes.clone()
|
||||
downsampled_bboxes[:, 0] *= mw / iw
|
||||
downsampled_bboxes[:, 2] *= mw / iw
|
||||
downsampled_bboxes[:, 3] *= mh / ih
|
||||
downsampled_bboxes[:, 1] *= mh / ih
|
||||
|
||||
masks = crop_mask(masks, downsampled_bboxes) # CHW
|
||||
if upsample:
|
||||
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||||
return masks.gt_(0.5)
|
||||
|
@ -179,3 +179,13 @@ def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
|
||||
def intersect_state_dicts(da, db, exclude=()):
|
||||
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
||||
|
||||
|
||||
def is_parallel(model):
|
||||
# Returns True if model is of type DP or DDP
|
||||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
|
||||
|
||||
def de_parallel(model):
|
||||
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
||||
return model.module if is_parallel(model) else model
|
||||
|
@ -1,7 +1,7 @@
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics.yolo.v8 import classify
|
||||
from ultralytics.yolo.v8 import classify, segment
|
||||
|
||||
ROOT = Path(__file__).parents[0] # yolov8 ROOT
|
||||
|
||||
__all__ = ["classify"]
|
||||
__all__ = ["classify", "segment"]
|
||||
|
@ -38,13 +38,22 @@ class ClassificationTrainer(BaseTrainer):
|
||||
return train_set, test_set
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
|
||||
return build_classification_dataloader(path=dataset_path, batch_size=self.args.batch_size, rank=rank)
|
||||
return build_classification_dataloader(path=dataset_path,
|
||||
imgsz=self.args.img_size,
|
||||
batch_size=self.args.batch_size,
|
||||
rank=rank)
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device)
|
||||
batch["cls"] = batch["cls"].to(self.device)
|
||||
return batch
|
||||
|
||||
def get_validator(self):
|
||||
return v8.classify.ClassificationValidator(self.test_loader, self.device, logger=self.console)
|
||||
|
||||
def criterion(self, preds, targets):
|
||||
return torch.nn.functional.cross_entropy(preds, targets)
|
||||
def criterion(self, preds, batch):
|
||||
loss = torch.nn.functional.cross_entropy(preds, batch["cls"])
|
||||
return loss, loss
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
||||
|
@ -5,10 +5,16 @@ from ultralytics.yolo.engine.validator import BaseValidator
|
||||
|
||||
class ClassificationValidator(BaseValidator):
|
||||
|
||||
def init_metrics(self):
|
||||
def init_metrics(self, model):
|
||||
self.correct = torch.tensor([])
|
||||
|
||||
def update_metrics(self, preds, targets):
|
||||
def preprocess_batch(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device)
|
||||
batch["cls"] = batch["cls"].to(self.device)
|
||||
return batch
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
targets = batch["cls"]
|
||||
correct_in_batch = (targets[:, None] == preds).float()
|
||||
self.correct = torch.cat((self.correct, correct_in_batch))
|
||||
|
||||
|
48
ultralytics/yolo/v8/models/yolov5n-seg.yaml
Normal file
48
ultralytics/yolo/v8/models/yolov5n-seg.yaml
Normal file
@ -0,0 +1,48 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.25 # layer channel multiple
|
||||
anchors:
|
||||
- [10,13, 16,30, 33,23] # P3/8
|
||||
- [30,61, 62,45, 59,119] # P4/16
|
||||
- [116,90, 156,198, 373,326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head:
|
||||
[[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||
]
|
48
ultralytics/yolo/v8/models/yolov5n.yaml
Normal file
48
ultralytics/yolo/v8/models/yolov5n.yaml
Normal file
@ -0,0 +1,48 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.25 # layer channel multiple
|
||||
anchors:
|
||||
- [10,13, 16,30, 33,23] # P3/8
|
||||
- [30,61, 62,45, 59,119] # P4/16
|
||||
- [116,90, 156,198, 373,326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head:
|
||||
[[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||
]
|
2
ultralytics/yolo/v8/segment/__init__.py
Normal file
2
ultralytics/yolo/v8/segment/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from ultralytics.yolo.v8.segment.train import SegmentationTrainer
|
||||
from ultralytics.yolo.v8.segment.val import SegmentationValidator
|
269
ultralytics/yolo/v8/segment/train.py
Normal file
269
ultralytics/yolo/v8/segment/train.py
Normal file
@ -0,0 +1,269 @@
|
||||
import subprocess
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.data import build_dataloader
|
||||
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
|
||||
from ultralytics.yolo.utils.downloads import download
|
||||
from ultralytics.yolo.utils.files import WorkingDirectory
|
||||
from ultralytics.yolo.utils.metrics import FocalLoss, bbox_iou, smooth_BCE
|
||||
from ultralytics.yolo.utils.modeling.tasks import SegmentationModel
|
||||
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy
|
||||
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, de_parallel, torch_distributed_zero_first
|
||||
|
||||
|
||||
# BaseTrainer python usage
|
||||
class SegmentationTrainer(BaseTrainer):
|
||||
|
||||
def get_dataset(self, dataset):
|
||||
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
|
||||
data = Path("datasets") / dataset
|
||||
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(Path.cwd()):
|
||||
data_dir = data if data.is_dir() else (Path.cwd() / data)
|
||||
if not data_dir.is_dir():
|
||||
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
|
||||
t = time.time()
|
||||
if str(data) == 'imagenet':
|
||||
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
|
||||
else:
|
||||
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
|
||||
download(url, dir=data_dir.parent)
|
||||
# TODO: add colorstr
|
||||
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {'bold', data_dir}\n"
|
||||
self.console.info(s)
|
||||
train_set = data_dir.parent / "coco128-seg"
|
||||
test_set = train_set
|
||||
return train_set, test_set
|
||||
|
||||
def get_dataloader(self, dataset_path, batch_size, rank=0):
|
||||
# TODO: manage splits differently
|
||||
# calculate stride - check if model is initialized
|
||||
gs = max(int(self.model.stride.max() if self.model else 0), 32)
|
||||
loader = build_dataloader(
|
||||
img_path=dataset_path,
|
||||
img_size=self.args.img_size,
|
||||
batch_size=batch_size,
|
||||
single_cls=self.args.single_cls,
|
||||
cache=self.args.cache,
|
||||
image_weights=self.args.image_weights,
|
||||
stride=gs,
|
||||
rect=self.args.rect,
|
||||
rank=rank,
|
||||
workers=self.args.workers,
|
||||
shuffle=self.args.shuffle,
|
||||
use_segments=True,
|
||||
)[0]
|
||||
return loader
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255
|
||||
return batch
|
||||
|
||||
def load_cfg(self, cfg):
|
||||
return SegmentationModel(cfg, nc=80)
|
||||
|
||||
def get_validator(self):
|
||||
return v8.segment.SegmentationValidator(self.test_loader, self.device, logger=self.console)
|
||||
|
||||
def criterion(self, preds, batch):
|
||||
head = de_parallel(self.model).model[-1]
|
||||
sort_obj_iou = False
|
||||
autobalance = False
|
||||
|
||||
# init losses
|
||||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.cls_pw], device=self.device))
|
||||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([self.args.obj_pw], device=self.device))
|
||||
|
||||
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||
cp, cn = smooth_BCE(eps=self.args.label_smoothing) # positive, negative BCE targets
|
||||
|
||||
# Focal loss
|
||||
g = self.args.fl_gamma
|
||||
if self.args.fl_gamma > 0:
|
||||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||
|
||||
balance = {3: [4.0, 1.0, 0.4]}.get(head.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
||||
ssi = list(head.stride).index(16) if autobalance else 0 # stride 16 index
|
||||
BCEcls, BCEobj, gr, autobalance = BCEcls, BCEobj, 1.0, autobalance
|
||||
|
||||
def single_mask_loss(gt_mask, pred, proto, xyxy, area):
|
||||
# Mask loss for one image
|
||||
pred_mask = (pred @ proto.view(head.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
|
||||
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
|
||||
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
||||
|
||||
def build_targets(p, targets):
|
||||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||
nonlocal head
|
||||
na, nt = head.na, targets.shape[0] # number of anchors, targets
|
||||
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
|
||||
gain = torch.ones(8, device=self.device) # normalized to gridspace gain
|
||||
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1,
|
||||
nt) # same as .repeat_interleave(nt)
|
||||
if self.args.overlap_mask:
|
||||
batch = p[0].shape[0]
|
||||
ti = []
|
||||
for i in range(batch):
|
||||
num = (targets[:, 0] == i).sum() # find number of targets of each image
|
||||
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
|
||||
ti = torch.cat(ti, 1) # (na, nt)
|
||||
else:
|
||||
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
|
||||
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
|
||||
|
||||
g = 0.5 # bias
|
||||
off = torch.tensor(
|
||||
[
|
||||
[0, 0],
|
||||
[1, 0],
|
||||
[0, 1],
|
||||
[-1, 0],
|
||||
[0, -1], # j,k,l,m
|
||||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||
],
|
||||
device=self.device).float() * g # offsets
|
||||
|
||||
for i in range(head.nl):
|
||||
anchors, shape = head.anchors[i], p[i].shape
|
||||
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
||||
|
||||
# Match targets to anchors
|
||||
t = targets * gain # shape(3,n,7)
|
||||
if nt:
|
||||
# Matches
|
||||
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
||||
j = torch.max(r, 1 / r).max(2)[0] < self.args.anchor_t # compare
|
||||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||
t = t[j] # filter
|
||||
|
||||
# Offsets
|
||||
gxy = t[:, 2:4] # grid xy
|
||||
gxi = gain[[2, 3]] - gxy # inverse
|
||||
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
||||
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
||||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||
t = t.repeat((5, 1, 1))[j]
|
||||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||
else:
|
||||
t = targets[0]
|
||||
offsets = 0
|
||||
|
||||
# Define
|
||||
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
||||
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
|
||||
gij = (gxy - offsets).long()
|
||||
gi, gj = gij.T # grid indices
|
||||
|
||||
# Append
|
||||
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
||||
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||
anch.append(anchors[a]) # anchors
|
||||
tcls.append(c) # class
|
||||
tidxs.append(tidx)
|
||||
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
|
||||
|
||||
return tcls, tbox, indices, anch, tidxs, xywhn
|
||||
|
||||
if self.model.training:
|
||||
p, proto, = preds
|
||||
else:
|
||||
p, proto, train_out = preds
|
||||
p = train_out
|
||||
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
||||
masks = batch["masks"]
|
||||
targets, masks = targets.to(self.device), masks.to(self.device).float()
|
||||
|
||||
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
||||
lcls = torch.zeros(1, device=self.device)
|
||||
lbox = torch.zeros(1, device=self.device)
|
||||
lobj = torch.zeros(1, device=self.device)
|
||||
lseg = torch.zeros(1, device=self.device)
|
||||
tcls, tbox, indices, anchors, tidxs, xywhn = build_targets(p, targets)
|
||||
|
||||
# Losses
|
||||
for i, pi in enumerate(p): # layer index, layer predictions
|
||||
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
||||
|
||||
n = b.shape[0] # number of targets
|
||||
if n:
|
||||
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, head.nc, nm), 1) # subset of predictions
|
||||
|
||||
# Box regression
|
||||
pxy = pxy.sigmoid() * 2 - 0.5
|
||||
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
||||
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
||||
lbox += (1.0 - iou).mean() # iou loss
|
||||
|
||||
# Objectness
|
||||
iou = iou.detach().clamp(0).type(tobj.dtype)
|
||||
if sort_obj_iou:
|
||||
j = iou.argsort()
|
||||
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
||||
if gr < 1:
|
||||
iou = (1.0 - gr) + gr * iou
|
||||
tobj[b, a, gj, gi] = iou # iou ratio
|
||||
|
||||
# Classification
|
||||
if head.nc > 1: # cls loss (only if multiple classes)
|
||||
t = torch.full_like(pcls, cn, device=self.device) # targets
|
||||
t[range(n), tcls[i]] = cp
|
||||
lcls += BCEcls(pcls, t) # BCE
|
||||
|
||||
# Mask regression
|
||||
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
||||
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
|
||||
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
|
||||
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
|
||||
for bi in b.unique():
|
||||
j = b == bi # matching index
|
||||
if True:
|
||||
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
|
||||
else:
|
||||
mask_gti = masks[tidxs[i]][j]
|
||||
lseg += single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
|
||||
|
||||
obji = BCEobj(pi[..., 4], tobj)
|
||||
lobj += obji * balance[i] # obj loss
|
||||
if autobalance:
|
||||
balance[i] = balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
||||
|
||||
if autobalance:
|
||||
balance = [x / balance[ssi] for x in balance]
|
||||
lbox *= self.args.box
|
||||
lobj *= self.args.obj
|
||||
lcls *= self.args.cls
|
||||
lseg *= self.args.box / bs
|
||||
|
||||
loss = lbox + lobj + lcls + lseg
|
||||
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
|
||||
|
||||
def progress_string(self):
|
||||
return ('\n' + '%11s' * 7) % \
|
||||
('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Size')
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
|
||||
def train(cfg):
|
||||
cfg.cfg = v8.ROOT / "models/yolov5n-seg.yaml"
|
||||
cfg.data = cfg.data or "coco128-segments" # or yolo.ClassificationDataset("mnist")
|
||||
trainer = SegmentationTrainer(cfg)
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
CLI usage:
|
||||
python ultralytics/yolo/v8/segment/train.py cfg=yolov5n-seg.yaml data=coco128-segments epochs=100 img_size=640
|
||||
|
||||
TODO:
|
||||
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
||||
"""
|
||||
train()
|
211
ultralytics/yolo/v8/segment/val.py
Normal file
211
ultralytics/yolo/v8/segment/val.py
Normal file
@ -0,0 +1,211 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.yolo.engine.validator import BaseValidator
|
||||
from ultralytics.yolo.utils import ops
|
||||
from ultralytics.yolo.utils.checks import check_requirements
|
||||
from ultralytics.yolo.utils.metrics import (ConfusionMatrix, Metrics, ap_per_class_box_and_mask, box_iou,
|
||||
fitness_segmentation, mask_iou)
|
||||
from ultralytics.yolo.utils.modeling import yaml_load
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
|
||||
|
||||
class SegmentationValidator(BaseValidator):
|
||||
|
||||
def __init__(self, dataloader, pbar=None, logger=None, args=None):
|
||||
super().__init__(dataloader, pbar, logger, args)
|
||||
if self.args.save_json:
|
||||
check_requirements(['pycocotools'])
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
else:
|
||||
self.process = ops.process_mask # faster
|
||||
self.data_dict = yaml_load(self.args.data) if self.args.data else None
|
||||
self.is_coco = False
|
||||
self.class_map = None
|
||||
self.targets = None
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
||||
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 225
|
||||
batch["bboxes"] = batch["bboxes"].to(self.device)
|
||||
batch["masks"] = batch["masks"].to(self.device).float()
|
||||
self.nb, _, self.height, self.width = batch["img"].shape # batch size, channels, height, width
|
||||
self.targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
||||
self.lb = [self.targets[self.targets[:, 0] == i, 1:]
|
||||
for i in range(self.nb)] if self.args.save_hybrid else [] # for autolabelling
|
||||
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
head = de_parallel(model).model[-1]
|
||||
if self.data_dict:
|
||||
self.is_coco = isinstance(self.data_dict.get('val'),
|
||||
str) and self.data_dict['val'].endswith(f'coco{os.sep}val2017.txt')
|
||||
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||
|
||||
self.nc = head.nc
|
||||
self.nm = head.nm
|
||||
self.names = model.names
|
||||
if isinstance(self.names, (list, tuple)): # old format
|
||||
self.names = dict(enumerate(self.names))
|
||||
|
||||
self.iouv = torch.linspace(0.5, 0.95, 10, device=self.device) # iou vector for mAP@0.5:0.95
|
||||
self.niou = self.iouv.numel()
|
||||
self.seen = 0
|
||||
self.confusion_matrix = ConfusionMatrix(nc=self.nc)
|
||||
self.metrics = Metrics()
|
||||
self.loss = torch.zeros(4, device=self.device)
|
||||
self.jdict = []
|
||||
self.stats = []
|
||||
|
||||
def get_desc(self):
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P",
|
||||
"R", "mAP50", "mAP50-95)")
|
||||
|
||||
def preprocess_preds(self, preds):
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf_thres,
|
||||
self.args.iou_thres,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nm=self.nm)
|
||||
return (p, preds[0], preds[2])
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
# Metrics
|
||||
plot_masks = [] # masks for plotting
|
||||
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
||||
labels = self.targets[self.targets[:, 0] == si, 1:]
|
||||
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = Path(batch["im_file"][si])
|
||||
# path = batch["shape"][si][0]
|
||||
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_masks, correct_bboxes, *torch.zeros(
|
||||
(2, 0), device=self.device), labels[:, 0]))
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
|
||||
continue
|
||||
|
||||
# Masks
|
||||
midx = [si] if self.args.overlap_mask else self.targets[:, 0] == si
|
||||
gt_masks = batch["masks"][midx]
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch["img"][si].shape[1:])
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape, batch["shape"][si][1]) # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
tbox = ops.xywh2xyxy(labels[:, 1:5]) # target boxes
|
||||
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape, batch["shapes"][si][1]) # native-space labels
|
||||
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn, labelsn, self.iouv)
|
||||
correct_masks = self._process_batch(predn, labelsn, self.iouv, pred_masks, gt_masks, masks=True)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
self.stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:,
|
||||
0])) # (conf, pcls, tcls)
|
||||
|
||||
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||
if self.plots and self.batch_i < 3:
|
||||
plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
|
||||
|
||||
# TODO: Save/log
|
||||
'''
|
||||
if self.args.save_txt:
|
||||
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
if self.args.save_json:
|
||||
pred_masks = scale_image(im[si].shape[1:],
|
||||
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
|
||||
save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
|
||||
# callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
||||
'''
|
||||
|
||||
# TODO Plot images
|
||||
'''
|
||||
if self.args.plots and self.batch_i < 3:
|
||||
if len(plot_masks):
|
||||
plot_masks = torch.cat(plot_masks, dim=0)
|
||||
plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
|
||||
plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
|
||||
save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
|
||||
'''
|
||||
|
||||
def get_stats(self):
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
# TODO: save_dir
|
||||
results = ap_per_class_box_and_mask(*stats, plot=self.args.plots, save_dir='', names=self.names)
|
||||
self.metrics.update(results)
|
||||
self.nt_per_class = np.bincount(stats[4].astype(int), minlength=self.nc) # number of targets per class
|
||||
keys = ["mp_bbox", "mr_bbox", "map50_bbox", "map_bbox", "mp_mask", "mr_mask", "map50_mask", "map_mask"]
|
||||
metrics = {"fitness": fitness_segmentation(np.array(self.metrics.mean_results()).reshape(1, -1))}
|
||||
metrics |= zip(keys, self.metrics.mean_results())
|
||||
return metrics
|
||||
|
||||
def print_results(self):
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
|
||||
self.logger.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||
if self.nt_per_class.sum() == 0:
|
||||
self.logger.warning(
|
||||
f'WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels')
|
||||
|
||||
# Print results per class
|
||||
if (self.args.verbose or (self.nc < 50 and not self.training)) and self.nc > 1 and len(self.stats):
|
||||
for i, c in enumerate(self.metrics.ap_class_index):
|
||||
self.logger.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
|
||||
|
||||
# plot TODO: save_dir
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.plot(save_dir='', names=list(self.names.values()))
|
||||
|
||||
def _process_batch(self, detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||
"""
|
||||
Return correct prediction matrix
|
||||
Arguments:
|
||||
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (array[M, 5]), class, x1, y1, x2, y2
|
||||
Returns:
|
||||
correct (array[N, 10]), for 10 IoU levels
|
||||
"""
|
||||
if masks:
|
||||
if overlap:
|
||||
nl = len(labels)
|
||||
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
||||
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
||||
gt_masks = gt_masks.gt_(0.5)
|
||||
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||
else: # boxes
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
|
||||
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
||||
correct_class = labels[:, 0:1] == detections[:, 5]
|
||||
for i in range(len(iouv)):
|
||||
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
||||
if x[0].shape[0]:
|
||||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
|
||||
1).cpu().numpy() # [label, detect, iou]
|
||||
if x[0].shape[0] > 1:
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
correct[matches[:, 1].astype(int), i] = True
|
||||
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
48
ultralytics/yolov5n-seg.yaml
Normal file
48
ultralytics/yolov5n-seg.yaml
Normal file
@ -0,0 +1,48 @@
|
||||
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
||||
|
||||
# Parameters
|
||||
nc: 80 # number of classes
|
||||
depth_multiple: 0.33 # model depth multiple
|
||||
width_multiple: 0.25 # layer channel multiple
|
||||
anchors:
|
||||
- [10,13, 16,30, 33,23] # P3/8
|
||||
- [30,61, 62,45, 59,119] # P4/16
|
||||
- [116,90, 156,198, 373,326] # P5/32
|
||||
|
||||
# YOLOv5 v6.0 backbone
|
||||
backbone:
|
||||
# [from, number, module, args]
|
||||
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
||||
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||
[-1, 3, C3, [128]],
|
||||
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||
[-1, 6, C3, [256]],
|
||||
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||
[-1, 9, C3, [512]],
|
||||
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||
[-1, 3, C3, [1024]],
|
||||
[-1, 1, SPPF, [1024, 5]], # 9
|
||||
]
|
||||
|
||||
# YOLOv5 v6.0 head
|
||||
head:
|
||||
[[-1, 1, Conv, [512, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||
[-1, 3, C3, [512, False]], # 13
|
||||
|
||||
[-1, 1, Conv, [256, 1, 1]],
|
||||
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||
|
||||
[-1, 1, Conv, [256, 3, 2]],
|
||||
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||
|
||||
[-1, 1, Conv, [512, 3, 2]],
|
||||
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||
|
||||
[[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
|
||||
]
|
Loading…
x
Reference in New Issue
Block a user