mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
Accept model=yolov5*u.yaml
arguments (#4230)
This commit is contained in:
parent
7dcdca3bf4
commit
f5fc807fa7
@ -26,12 +26,10 @@ You can use many of these models directly in the Command Line Interface (CLI) or
|
||||
|
||||
## Usage
|
||||
|
||||
You can use RT-DETR for object detection tasks using the `ultralytics` pip package. The following is a sample code snippet showing how to use RT-DETR models for training and inference:
|
||||
This example provides simple inference code for YOLO, SAM and RTDETR models. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using models with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
|
||||
|
||||
!!! example ""
|
||||
|
||||
This example provides simple inference code for YOLO, SAM and RTDETR models. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using models with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
|
||||
|
||||
=== "Python"
|
||||
|
||||
PyTorch pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()`, `SAM()`, `NAS()` and `RTDETR()` classes to create a model instance in python:
|
||||
|
@ -1,3 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics import SAM, YOLO
|
||||
|
@ -1,3 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import json
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import signal
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, GPL-3.0 license
|
||||
|
||||
import os
|
||||
|
||||
import pkg_resources as pkg
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.utils import SETTINGS, TESTS_RUNNING
|
||||
from ultralytics.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
|
@ -341,13 +341,17 @@ def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
|
||||
|
||||
def check_yolov5u_filename(file: str, verbose: bool = True):
|
||||
"""Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
|
||||
if ('yolov3' in file or 'yolov5' in file) and 'u' not in file:
|
||||
if 'yolov3' in file or 'yolov5' in file:
|
||||
if 'u.yaml' in file:
|
||||
file = file.replace('u.yaml', '.yaml') # i.e. yolov5nu.yaml -> yolov5n.yaml
|
||||
elif '.pt' in file and 'u' not in file:
|
||||
original_file = file
|
||||
file = re.sub(r'(.*yolov5([nsmlx]))\.pt', '\\1u.pt', file) # i.e. yolov5n.pt -> yolov5nu.pt
|
||||
file = re.sub(r'(.*yolov5([nsmlx])6)\.pt', '\\1u.pt', file) # i.e. yolov5n6.pt -> yolov5n6u.pt
|
||||
file = re.sub(r'(.*yolov3(|-tiny|-spp))\.pt', '\\1u.pt', file) # i.e. yolov3-spp.pt -> yolov3-sppu.pt
|
||||
if file != original_file and verbose:
|
||||
LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
||||
LOGGER.info(
|
||||
f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
|
||||
f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs '
|
||||
f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n')
|
||||
return file
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import math
|
||||
import os
|
||||
import platform
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.cfg import TASK2DATA, TASK2METRIC
|
||||
from ultralytics.utils import DEFAULT_CFG_DICT, LOGGER, NUM_THREADS
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user