mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 05:24:22 +08:00
Update pyproject.toml
and Docs (#7274)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yaofu <voipman@sina.cn> Co-authored-by: Umit Kacar, PhD <kacarumit.phd@gmail.com>
This commit is contained in:
parent
e687c09423
commit
f702b34a50
@ -32,7 +32,7 @@ repos:
|
||||
name: Upgrade code
|
||||
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
name: Sort imports
|
||||
|
@ -30,13 +30,15 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
|
||||
|
||||
- [Ray Tune](ray-tune.md): Optimize the hyperparameters of your Ultralytics models at any scale.
|
||||
|
||||
- [TensorBoard](https://tensorboard.dev/): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration.
|
||||
- [TensorBoard](tensorboard.md): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration.
|
||||
|
||||
- [Weights & Biases (W&B)](weights-biases.md): Monitor experiments, visualize metrics, and foster reproducibility and collaboration on Ultralytics projects.
|
||||
|
||||
- [Amazon SageMaker](amazon-sagemaker.md): Leverage Amazon SageMaker to efficiently build, train, and deploy Ultralytics models, providing an all-in-one platform for the ML lifecycle.
|
||||
|
||||
## Deployment Integrations
|
||||
|
||||
- [Neural Magic](https://neuralmagic.com/): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
|
||||
- [Neural Magic](neural-magic.md): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
|
||||
|
||||
- [OpenVino](openvino.md): OpenVINO is Intel's toolkit for optimizing and deploying computer vision models efficiently across various Intel hardware platforms.
|
||||
|
||||
|
@ -79,10 +79,6 @@ keywords: Ultralytics, Data Augmentation, BaseTransform, MixUp, RandomHSV, Lette
|
||||
|
||||
<br><br>
|
||||
|
||||
## ::: ultralytics.data.augment.hsv2colorjitter
|
||||
|
||||
<br><br>
|
||||
|
||||
## ::: ultralytics.data.augment.classify_albumentations
|
||||
## ::: ultralytics.data.augment.classify_augmentations
|
||||
|
||||
<br><br>
|
||||
|
@ -289,6 +289,9 @@ nav:
|
||||
- ClearML: integrations/clearml.md
|
||||
- DVC: integrations/dvc.md
|
||||
- Weights & Biases: integrations/weights-biases.md
|
||||
- Neural Magic: integrations/neural-magic.md
|
||||
- TensorBoard: integrations/tensorboard.md
|
||||
- Amazon SageMaker: integrations/amazon-sagemaker.md
|
||||
- Usage:
|
||||
- CLI: usage/cli.md
|
||||
- Python: usage/python.md
|
||||
@ -416,8 +419,8 @@ nav:
|
||||
- tasks: reference/nn/tasks.md
|
||||
- solutions:
|
||||
- ai_gym: reference/solutions/ai_gym.md
|
||||
- object_counter: reference/solutions/object_counter.md
|
||||
- heatmap: reference/solutions/heatmap.md
|
||||
- object_counter: reference/solutions/object_counter.md
|
||||
- trackers:
|
||||
- basetrack: reference/trackers/basetrack.md
|
||||
- bot_sort: reference/trackers/bot_sort.md
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
#
|
||||
|
||||
# Overview:
|
||||
# This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library.
|
||||
# It defines essential project metadata, dependencies, and settings used to develop and deploy the library.
|
||||
@ -159,6 +159,9 @@ space_between_ending_comma_and_closing_bracket = true
|
||||
split_before_closing_bracket = false
|
||||
split_before_first_argument = false
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 120
|
||||
|
||||
[tool.docformatter]
|
||||
wrap-summaries = 120
|
||||
wrap-descriptions = 120
|
||||
@ -167,5 +170,5 @@ pre-summary-newline = true
|
||||
close-quotes-on-newline = true
|
||||
|
||||
[tool.codespell]
|
||||
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn"
|
||||
skip = '*.csv,*venv*,docs/de,docs/fr,docs/pt,docs/es,docs/mkdocs_de.yml'
|
||||
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn,commend"
|
||||
skip = '*.csv,*venv*,docs/??/,docs/mkdocs_??.yml'
|
||||
|
@ -1005,7 +1005,7 @@ def classify_transforms(
|
||||
crop_fraction (float): fraction of image to crop. default is 1.0.
|
||||
|
||||
Returns:
|
||||
T.Compose: torchvision transforms
|
||||
(T.Compose): torchvision transforms
|
||||
"""
|
||||
|
||||
if isinstance(size, (tuple, list)):
|
||||
@ -1064,13 +1064,12 @@ def classify_augmentations(
|
||||
hsv_h (float): image HSV-Hue augmentation (fraction)
|
||||
hsv_s (float): image HSV-Saturation augmentation (fraction)
|
||||
hsv_v (float): image HSV-Value augmentation (fraction)
|
||||
contrast (float): image contrast augmentation (fraction)
|
||||
force_color_jitter (bool): force to apply color jitter even if auto augment is enabled
|
||||
erasing (float): probability of random erasing
|
||||
interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR.
|
||||
|
||||
Returns:
|
||||
T.Compose: torchvision transforms
|
||||
(T.Compose): torchvision transforms
|
||||
"""
|
||||
# Transforms to apply if albumentations not installed
|
||||
if not isinstance(size, int):
|
||||
|
Loading…
x
Reference in New Issue
Block a user