mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-11-04 08:56:11 +08:00 
			
		
		
		
	Update pyproject.toml and Docs (#7274)
				
					
				
			Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Yaofu <voipman@sina.cn> Co-authored-by: Umit Kacar, PhD <kacarumit.phd@gmail.com>
This commit is contained in:
		
							parent
							
								
									e687c09423
								
							
						
					
					
						commit
						f702b34a50
					
				@ -32,7 +32,7 @@ repos:
 | 
			
		||||
        name: Upgrade code
 | 
			
		||||
 | 
			
		||||
  - repo: https://github.com/PyCQA/isort
 | 
			
		||||
    rev: 5.12.0
 | 
			
		||||
    rev: 5.13.2
 | 
			
		||||
    hooks:
 | 
			
		||||
      - id: isort
 | 
			
		||||
        name: Sort imports
 | 
			
		||||
 | 
			
		||||
@ -30,13 +30,15 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of
 | 
			
		||||
 | 
			
		||||
- [Ray Tune](ray-tune.md): Optimize the hyperparameters of your Ultralytics models at any scale.
 | 
			
		||||
 | 
			
		||||
- [TensorBoard](https://tensorboard.dev/): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration.
 | 
			
		||||
- [TensorBoard](tensorboard.md): Visualize your Ultralytics ML workflows, monitor model metrics, and foster team collaboration.
 | 
			
		||||
 | 
			
		||||
- [Weights & Biases (W&B)](weights-biases.md): Monitor experiments, visualize metrics, and foster reproducibility and collaboration on Ultralytics projects.
 | 
			
		||||
 | 
			
		||||
- [Amazon SageMaker](amazon-sagemaker.md): Leverage Amazon SageMaker to efficiently build, train, and deploy Ultralytics models, providing an all-in-one platform for the ML lifecycle.
 | 
			
		||||
 | 
			
		||||
## Deployment Integrations
 | 
			
		||||
 | 
			
		||||
- [Neural Magic](https://neuralmagic.com/): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
 | 
			
		||||
- [Neural Magic](neural-magic.md): Leverage Quantization Aware Training (QAT) and pruning techniques to optimize Ultralytics models for superior performance and leaner size.
 | 
			
		||||
 | 
			
		||||
- [OpenVino](openvino.md): OpenVINO is Intel's toolkit for optimizing and deploying computer vision models efficiently across various Intel hardware platforms.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -79,10 +79,6 @@ keywords: Ultralytics, Data Augmentation, BaseTransform, MixUp, RandomHSV, Lette
 | 
			
		||||
 | 
			
		||||
<br><br>
 | 
			
		||||
 | 
			
		||||
## ::: ultralytics.data.augment.hsv2colorjitter
 | 
			
		||||
 | 
			
		||||
<br><br>
 | 
			
		||||
 | 
			
		||||
## ::: ultralytics.data.augment.classify_albumentations
 | 
			
		||||
## ::: ultralytics.data.augment.classify_augmentations
 | 
			
		||||
 | 
			
		||||
<br><br>
 | 
			
		||||
 | 
			
		||||
@ -289,6 +289,9 @@ nav:
 | 
			
		||||
      - ClearML: integrations/clearml.md
 | 
			
		||||
      - DVC: integrations/dvc.md
 | 
			
		||||
      - Weights & Biases: integrations/weights-biases.md
 | 
			
		||||
      - Neural Magic: integrations/neural-magic.md
 | 
			
		||||
      - TensorBoard: integrations/tensorboard.md
 | 
			
		||||
      - Amazon SageMaker: integrations/amazon-sagemaker.md
 | 
			
		||||
  - Usage:
 | 
			
		||||
      - CLI: usage/cli.md
 | 
			
		||||
      - Python: usage/python.md
 | 
			
		||||
@ -416,8 +419,8 @@ nav:
 | 
			
		||||
          - tasks: reference/nn/tasks.md
 | 
			
		||||
      - solutions:
 | 
			
		||||
          - ai_gym: reference/solutions/ai_gym.md
 | 
			
		||||
          - object_counter: reference/solutions/object_counter.md
 | 
			
		||||
          - heatmap: reference/solutions/heatmap.md
 | 
			
		||||
          - object_counter: reference/solutions/object_counter.md
 | 
			
		||||
      - trackers:
 | 
			
		||||
          - basetrack: reference/trackers/basetrack.md
 | 
			
		||||
          - bot_sort: reference/trackers/bot_sort.md
 | 
			
		||||
 | 
			
		||||
@ -1,5 +1,5 @@
 | 
			
		||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
# Overview:
 | 
			
		||||
# This pyproject.toml file manages the build, packaging, and distribution of the Ultralytics library.
 | 
			
		||||
# It defines essential project metadata, dependencies, and settings used to develop and deploy the library.
 | 
			
		||||
@ -159,6 +159,9 @@ space_between_ending_comma_and_closing_bracket = true
 | 
			
		||||
split_before_closing_bracket = false
 | 
			
		||||
split_before_first_argument = false
 | 
			
		||||
 | 
			
		||||
[tool.ruff]
 | 
			
		||||
line-length = 120
 | 
			
		||||
 | 
			
		||||
[tool.docformatter]
 | 
			
		||||
wrap-summaries = 120
 | 
			
		||||
wrap-descriptions = 120
 | 
			
		||||
@ -167,5 +170,5 @@ pre-summary-newline = true
 | 
			
		||||
close-quotes-on-newline = true
 | 
			
		||||
 | 
			
		||||
[tool.codespell]
 | 
			
		||||
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn"
 | 
			
		||||
skip = '*.csv,*venv*,docs/de,docs/fr,docs/pt,docs/es,docs/mkdocs_de.yml'
 | 
			
		||||
ignore-words-list = "crate,nd,strack,dota,ane,segway,fo,gool,winn,commend"
 | 
			
		||||
skip = '*.csv,*venv*,docs/??/,docs/mkdocs_??.yml'
 | 
			
		||||
 | 
			
		||||
@ -1005,7 +1005,7 @@ def classify_transforms(
 | 
			
		||||
        crop_fraction (float): fraction of image to crop. default is 1.0.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        T.Compose: torchvision transforms
 | 
			
		||||
        (T.Compose): torchvision transforms
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    if isinstance(size, (tuple, list)):
 | 
			
		||||
@ -1064,13 +1064,12 @@ def classify_augmentations(
 | 
			
		||||
        hsv_h (float): image HSV-Hue augmentation (fraction)
 | 
			
		||||
        hsv_s (float): image HSV-Saturation augmentation (fraction)
 | 
			
		||||
        hsv_v (float): image HSV-Value augmentation (fraction)
 | 
			
		||||
        contrast (float): image contrast augmentation (fraction)
 | 
			
		||||
        force_color_jitter (bool): force to apply color jitter even if auto augment is enabled
 | 
			
		||||
        erasing (float): probability of random erasing
 | 
			
		||||
        interpolation (T.InterpolationMode): interpolation mode. default is T.InterpolationMode.BILINEAR.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        T.Compose: torchvision transforms
 | 
			
		||||
        (T.Compose): torchvision transforms
 | 
			
		||||
    """
 | 
			
		||||
    # Transforms to apply if albumentations not installed
 | 
			
		||||
    if not isinstance(size, int):
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user