mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-07-07 13:44:23 +08:00
add gradio demo
This commit is contained in:
parent
1f6d1fc7e6
commit
f837da7c0a
@ -21,6 +21,8 @@ Over the past years, YOLOs have emerged as the predominant paradigm in the field
|
||||
</details>
|
||||
|
||||
**UPDATES** 🔥
|
||||
- 2024/05/29: We identify a bug in existing HuggingFace demos. Please use `gr.Image(type="pil", label="Image")` rather than ``gr.Image(type="numpy", label="Image")`` for prediction.
|
||||
- 2024/05/29: Add the gradio demo for running the models locally. Thanks to [AK](https://x.com/_akhaliq)!
|
||||
- 2024/05/27: Thanks to [sujanshresstha](sujanshresstha) for the integration with [DeepSORT](https://github.com/sujanshresstha/YOLOv10_DeepSORT.git)!
|
||||
- 2024/05/27: We have updated the [checkpoints](https://github.com/THU-MIG/yolov10/releases/tag/v1.1) with other attributes, like class names, for ease of use.
|
||||
- 2024/05/26: Thanks to [CVHub520](https://github.com/CVHub520) for the integration into [X-AnyLabeling](https://github.com/CVHub520/X-AnyLabeling)!
|
||||
@ -47,6 +49,11 @@ conda activate yolov10
|
||||
pip install -r requirements.txt
|
||||
pip install -e .
|
||||
```
|
||||
## Demo
|
||||
```
|
||||
python app.py
|
||||
# Please visit http://127.0.0.1:7860
|
||||
```
|
||||
|
||||
## Validation
|
||||
[`yolov10n.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt) [`yolov10s.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt) [`yolov10m.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt) [`yolov10b.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt) [`yolov10l.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt) [`yolov10x.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt)
|
||||
|
100
app.py
Normal file
100
app.py
Normal file
@ -0,0 +1,100 @@
|
||||
# Ackownledgement: https://huggingface.co/spaces/kadirnar/Yolov10/blob/main/app.py
|
||||
# Thanks to @kadirnar
|
||||
|
||||
import gradio as gr
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
def yolov10_inference(image, model_path, image_size, conf_threshold):
|
||||
model = YOLOv10(model_path)
|
||||
|
||||
model.predict(source=image, imgsz=image_size, conf=conf_threshold, save=True)
|
||||
|
||||
return model.predictor.plotted_img[:, :, ::-1]
|
||||
|
||||
def app():
|
||||
with gr.Blocks():
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
image = gr.Image(type="pil", label="Image")
|
||||
|
||||
model_id = gr.Dropdown(
|
||||
label="Model",
|
||||
choices=[
|
||||
"yolov10n.pt",
|
||||
"yolov10s.pt",
|
||||
"yolov10m.pt",
|
||||
"yolov10b.pt",
|
||||
"yolov10l.pt",
|
||||
"yolov10x.pt",
|
||||
],
|
||||
value="yolov10s.pt",
|
||||
)
|
||||
image_size = gr.Slider(
|
||||
label="Image Size",
|
||||
minimum=320,
|
||||
maximum=1280,
|
||||
step=32,
|
||||
value=640,
|
||||
)
|
||||
conf_threshold = gr.Slider(
|
||||
label="Confidence Threshold",
|
||||
minimum=0.0,
|
||||
maximum=1.0,
|
||||
step=0.1,
|
||||
value=0.25,
|
||||
)
|
||||
yolov10_infer = gr.Button(value="Detect Objects")
|
||||
|
||||
with gr.Column():
|
||||
output_image = gr.Image(type="numpy", label="Annotated Image")
|
||||
|
||||
yolov10_infer.click(
|
||||
fn=yolov10_inference,
|
||||
inputs=[
|
||||
image,
|
||||
model_id,
|
||||
image_size,
|
||||
conf_threshold,
|
||||
],
|
||||
outputs=[output_image],
|
||||
)
|
||||
|
||||
gr.Examples(
|
||||
examples=[
|
||||
[
|
||||
"ultralytics/assets/bus.jpg",
|
||||
"yolov10s.pt",
|
||||
640,
|
||||
0.25,
|
||||
],
|
||||
[
|
||||
"ultralytics/assets/zidane.jpg",
|
||||
"yolov10s.pt",
|
||||
640,
|
||||
0.25,
|
||||
],
|
||||
],
|
||||
fn=yolov10_inference,
|
||||
inputs=[
|
||||
image,
|
||||
model_id,
|
||||
image_size,
|
||||
conf_threshold,
|
||||
],
|
||||
outputs=[output_image],
|
||||
cache_examples=True,
|
||||
)
|
||||
|
||||
gradio_app = gr.Blocks()
|
||||
with gradio_app:
|
||||
gr.HTML(
|
||||
"""
|
||||
<h1 style='text-align: center'>
|
||||
YOLOv10: Real-Time End-to-End Object Detection
|
||||
</h1>
|
||||
""")
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
app()
|
||||
|
||||
gradio_app.launch(debug=True)
|
@ -7,3 +7,4 @@ PyYAML==6.0.1
|
||||
scipy==1.13.0
|
||||
onnxsim==0.4.36
|
||||
onnxruntime-gpu==1.18.0
|
||||
gradio==4.31.5
|
Loading…
x
Reference in New Issue
Block a user