mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00
ultralytics 8.0.111
refactored model.loss()
method (#2911)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Snyk bot <snyk-bot@snyk.io>
This commit is contained in:
parent
305cde69d0
commit
fd94d312da
@ -27,6 +27,11 @@ description: Learn how to work with Ultralytics YOLO Detection, Segmentation & C
|
||||
:::ultralytics.nn.tasks.ClassificationModel
|
||||
<br><br>
|
||||
|
||||
# RTDETRDetectionModel
|
||||
---
|
||||
:::ultralytics.nn.tasks.RTDETRDetectionModel
|
||||
<br><br>
|
||||
|
||||
# Ensemble
|
||||
---
|
||||
:::ultralytics.nn.tasks.Ensemble
|
||||
|
@ -36,3 +36,8 @@ description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and te
|
||||
---
|
||||
:::ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list
|
||||
<br><br>
|
||||
|
||||
# get_best_youtube_url
|
||||
---
|
||||
:::ultralytics.yolo.data.dataloaders.stream_loaders.get_best_youtube_url
|
||||
<br><br>
|
||||
|
@ -16,3 +16,23 @@ description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO fo
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.KeypointLoss
|
||||
<br><br>
|
||||
|
||||
# v8DetectionLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.v8DetectionLoss
|
||||
<br><br>
|
||||
|
||||
# v8SegmentationLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.v8SegmentationLoss
|
||||
<br><br>
|
||||
|
||||
# v8PoseLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.v8PoseLoss
|
||||
<br><br>
|
||||
|
||||
# v8ClassificationLoss
|
||||
---
|
||||
:::ultralytics.yolo.utils.loss.v8ClassificationLoss
|
||||
<br><br>
|
||||
|
@ -7,11 +7,6 @@ description: Train and optimize custom object detection models with Ultralytics
|
||||
:::ultralytics.yolo.v8.detect.train.DetectionTrainer
|
||||
<br><br>
|
||||
|
||||
# Loss
|
||||
---
|
||||
:::ultralytics.yolo.v8.detect.train.Loss
|
||||
<br><br>
|
||||
|
||||
# train
|
||||
---
|
||||
:::ultralytics.yolo.v8.detect.train.train
|
||||
|
@ -7,11 +7,6 @@ description: Boost posture detection using PoseTrainer and train models using tr
|
||||
:::ultralytics.yolo.v8.pose.train.PoseTrainer
|
||||
<br><br>
|
||||
|
||||
# PoseLoss
|
||||
---
|
||||
:::ultralytics.yolo.v8.pose.train.PoseLoss
|
||||
<br><br>
|
||||
|
||||
# train
|
||||
---
|
||||
:::ultralytics.yolo.v8.pose.train.train
|
||||
|
@ -7,11 +7,6 @@ description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 fo
|
||||
:::ultralytics.yolo.v8.segment.train.SegmentationTrainer
|
||||
<br><br>
|
||||
|
||||
# SegLoss
|
||||
---
|
||||
:::ultralytics.yolo.v8.segment.train.SegLoss
|
||||
<br><br>
|
||||
|
||||
# train
|
||||
---
|
||||
:::ultralytics.yolo.v8.segment.train.train
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = '8.0.110'
|
||||
__version__ = '8.0.111'
|
||||
|
||||
from ultralytics.hub import start
|
||||
from ultralytics.vit.rtdetr import RTDETR
|
||||
|
@ -21,10 +21,9 @@ from .head import Classify, Detect, Pose, RTDETRDecoder, Segment
|
||||
from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d,
|
||||
MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer)
|
||||
|
||||
__all__ = [
|
||||
'Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
|
||||
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer', 'TransformerBlock', 'MLPBlock',
|
||||
'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
|
||||
'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect', 'Segment', 'Pose', 'Classify',
|
||||
'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI', 'DeformableTransformerDecoder',
|
||||
'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP']
|
||||
__all__ = ('Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus',
|
||||
'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer',
|
||||
'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3',
|
||||
'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect',
|
||||
'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
||||
|
@ -10,9 +10,8 @@ import torch.nn.functional as F
|
||||
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
|
||||
from .transformer import TransformerBlock
|
||||
|
||||
__all__ = [
|
||||
'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck',
|
||||
'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3']
|
||||
__all__ = ('DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
|
||||
'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3')
|
||||
|
||||
|
||||
class DFL(nn.Module):
|
||||
|
@ -9,9 +9,8 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = [
|
||||
'Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', 'ChannelAttention',
|
||||
'SpatialAttention', 'CBAM', 'Concat', 'RepConv']
|
||||
__all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
|
||||
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
|
||||
|
||||
|
||||
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||
|
@ -16,7 +16,7 @@ from .conv import Conv
|
||||
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
|
||||
from .utils import bias_init_with_prob, linear_init_
|
||||
|
||||
__all__ = ['Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder']
|
||||
__all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
|
@ -13,9 +13,8 @@ from torch.nn.init import constant_, xavier_uniform_
|
||||
from .conv import Conv
|
||||
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
||||
|
||||
__all__ = [
|
||||
'TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP']
|
||||
__all__ = ('TransformerEncoderLayer', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'AIFI',
|
||||
'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP')
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
|
@ -12,7 +12,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import uniform_
|
||||
|
||||
__all__ = ['multi_scale_deformable_attn_pytorch', 'inverse_sigmoid']
|
||||
__all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid'
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
|
@ -9,7 +9,7 @@ from ultralytics.yolo.data.augment import Compose, Format, LetterBox
|
||||
from ultralytics.yolo.utils import colorstr, ops
|
||||
from ultralytics.yolo.v8.detect import DetectionValidator
|
||||
|
||||
__all__ = ['RTDETRValidator']
|
||||
__all__ = 'RTDETRValidator', # tuple or list
|
||||
|
||||
|
||||
# TODO: Temporarily, RT-DETR does not need padding.
|
||||
|
Loading…
x
Reference in New Issue
Block a user