--- description: Learn how to work with Ultralytics YOLO Detection, Segmentation & Classification Models, load weights and parse models in PyTorch. keywords: neural network, deep learning, computer vision, object detection, image segmentation, image classification, model ensemble, PyTorch --- ## BaseModel --- ### ::: ultralytics.nn.tasks.BaseModel <br><br> ## DetectionModel --- ### ::: ultralytics.nn.tasks.DetectionModel <br><br> ## SegmentationModel --- ### ::: ultralytics.nn.tasks.SegmentationModel <br><br> ## PoseModel --- ### ::: ultralytics.nn.tasks.PoseModel <br><br> ## ClassificationModel --- ### ::: ultralytics.nn.tasks.ClassificationModel <br><br> ## RTDETRDetectionModel --- ### ::: ultralytics.nn.tasks.RTDETRDetectionModel <br><br> ## Ensemble --- ### ::: ultralytics.nn.tasks.Ensemble <br><br> ## torch_safe_load --- ### ::: ultralytics.nn.tasks.torch_safe_load <br><br> ## attempt_load_weights --- ### ::: ultralytics.nn.tasks.attempt_load_weights <br><br> ## attempt_load_one_weight --- ### ::: ultralytics.nn.tasks.attempt_load_one_weight <br><br> ## parse_model --- ### ::: ultralytics.nn.tasks.parse_model <br><br> ## yaml_model_load --- ### ::: ultralytics.nn.tasks.yaml_model_load <br><br> ## guess_model_scale --- ### ::: ultralytics.nn.tasks.guess_model_scale <br><br> ## guess_model_task --- ### ::: ultralytics.nn.tasks.guess_model_task <br><br>