# Ultralytics YOLO 🚀, AGPL-3.0 license from collections import defaultdict import cv2 import numpy as np from ultralytics.utils.checks import check_requirements from ultralytics.utils.plotting import Annotator check_requirements('shapely>=2.0.0') from shapely.geometry import Polygon from shapely.geometry.point import Point class Heatmap: """A class to draw heatmaps in real-time video stream based on their tracks.""" def __init__(self): """Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters.""" # Visual Information self.annotator = None self.view_img = False # Image Information self.imw = None self.imh = None self.im0 = None # Heatmap Colormap and heatmap np array self.colormap = None self.heatmap = None self.heatmap_alpha = 0.5 # Predict/track information self.boxes = None self.track_ids = None self.clss = None self.track_history = None # Counting Info self.count_reg_pts = None self.count_region = None self.in_counts = 0 self.out_counts = 0 self.count_list = [] self.count_txt_thickness = 0 self.count_reg_color = (0, 255, 0) self.region_thickness = 5 def set_args(self, imw, imh, colormap=cv2.COLORMAP_JET, heatmap_alpha=0.5, view_img=False, count_reg_pts=None, count_txt_thickness=2, count_reg_color=(255, 0, 255), region_thickness=5): """ Configures the heatmap colormap, width, height and display parameters. Args: colormap (cv2.COLORMAP): The colormap to be set. imw (int): The width of the frame. imh (int): The height of the frame. heatmap_alpha (float): alpha value for heatmap display view_img (bool): Flag indicating frame display count_reg_pts (list): Object counting region points count_txt_thickness (int): Text thickness for object counting display count_reg_color (RGB color): Color of object counting region region_thickness (int): Object counting Region thickness """ self.imw = imw self.imh = imh self.colormap = colormap self.heatmap_alpha = heatmap_alpha self.view_img = view_img self.heatmap = np.zeros((int(self.imw), int(self.imh)), dtype=np.float32) # Heatmap new frame if count_reg_pts is not None: self.track_history = defaultdict(list) self.count_reg_pts = count_reg_pts self.count_region = Polygon(self.count_reg_pts) self.count_txt_thickness = count_txt_thickness # Counting text thickness self.count_reg_color = count_reg_color self.region_thickness = region_thickness def extract_results(self, tracks): """ Extracts results from the provided data. Args: tracks (list): List of tracks obtained from the object tracking process. """ self.boxes = tracks[0].boxes.xyxy.cpu() self.clss = tracks[0].boxes.cls.cpu().tolist() self.track_ids = tracks[0].boxes.id.int().cpu().tolist() def generate_heatmap(self, im0, tracks): """ Generate heatmap based on tracking data. Args: im0 (nd array): Image tracks (list): List of tracks obtained from the object tracking process. """ self.im0 = im0 if tracks[0].boxes.id is None: return self.im0 self.extract_results(tracks) self.annotator = Annotator(self.im0, self.count_txt_thickness, None) if self.count_reg_pts is not None: # Draw counting region self.annotator.draw_region(reg_pts=self.count_reg_pts, color=self.count_reg_color, thickness=self.region_thickness) for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids): self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1 # Store tracking hist track_line = self.track_history[track_id] track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) if len(track_line) > 30: track_line.pop(0) # Count objects if self.count_region.contains(Point(track_line[-1])): if track_id not in self.count_list: self.count_list.append(track_id) if box[0] < self.count_region.centroid.x: self.out_counts += 1 else: self.in_counts += 1 else: for box, cls in zip(self.boxes, self.clss): self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1 # Normalize, apply colormap to heatmap and combine with original image heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX) heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap) if self.count_reg_pts is not None: incount_label = 'InCount : ' + f'{self.in_counts}' outcount_label = 'OutCount : ' + f'{self.out_counts}' self.annotator.count_labels(in_count=incount_label, out_count=outcount_label) im0_with_heatmap = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0) if self.view_img: self.display_frames(im0_with_heatmap) return im0_with_heatmap def display_frames(self, im0_with_heatmap): """ Display heatmap. Args: im0_with_heatmap (nd array): Original Image with heatmap """ cv2.imshow('Ultralytics Heatmap', im0_with_heatmap) if cv2.waitKey(1) & 0xFF == ord('q'): return if __name__ == '__main__': Heatmap()