# Ultralytics YOLO 🚀, AGPL-3.0 license from collections import defaultdict import cv2 from ultralytics.utils.checks import check_requirements from ultralytics.utils.plotting import Annotator, colors check_requirements('shapely>=2.0.0') from shapely.geometry import Polygon from shapely.geometry.point import Point class ObjectCounter: """A class to manage the counting of objects in a real-time video stream based on their tracks.""" def __init__(self): """Initializes the Counter with default values for various tracking and counting parameters.""" # Mouse events self.is_drawing = False self.selected_point = None # Region Information self.reg_pts = None self.counting_region = None self.region_color = (255, 255, 255) # Image and annotation Information self.im0 = None self.tf = None self.view_img = False self.names = None # Classes names self.annotator = None # Annotator # Object counting Information self.in_counts = 0 self.out_counts = 0 self.counting_list = [] # Tracks info self.track_history = defaultdict(list) self.track_thickness = 2 self.draw_tracks = False def set_args(self, classes_names, reg_pts, region_color=None, line_thickness=2, track_thickness=2, view_img=False, draw_tracks=False): """ Configures the Counter's image, bounding box line thickness, and counting region points. Args: line_thickness (int): Line thickness for bounding boxes. view_img (bool): Flag to control whether to display the video stream. reg_pts (list): Initial list of points defining the counting region. classes_names (dict): Classes names region_color (tuple): color for region line track_thickness (int): Track thickness draw_tracks (Bool): draw tracks """ self.tf = line_thickness self.view_img = view_img self.track_thickness = track_thickness self.draw_tracks = draw_tracks self.reg_pts = reg_pts self.counting_region = Polygon(self.reg_pts) self.names = classes_names self.region_color = region_color if region_color else self.region_color def mouse_event_for_region(self, event, x, y, flags, params): """ This function is designed to move region with mouse events in a real-time video stream. Args: event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.). x (int): The x-coordinate of the mouse pointer. y (int): The y-coordinate of the mouse pointer. flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.). params (dict): Additional parameters you may want to pass to the function. """ # global is_drawing, selected_point if event == cv2.EVENT_LBUTTONDOWN: for i, point in enumerate(self.reg_pts): if isinstance(point, (tuple, list)) and len(point) >= 2: if abs(x - point[0]) < 10 and abs(y - point[1]) < 10: self.selected_point = i self.is_drawing = True break elif event == cv2.EVENT_MOUSEMOVE: if self.is_drawing and self.selected_point is not None: self.reg_pts[self.selected_point] = (x, y) self.counting_region = Polygon(self.reg_pts) elif event == cv2.EVENT_LBUTTONUP: self.is_drawing = False self.selected_point = None def extract_and_process_tracks(self, tracks): boxes = tracks[0].boxes.xyxy.cpu() clss = tracks[0].boxes.cls.cpu().tolist() track_ids = tracks[0].boxes.id.int().cpu().tolist() self.annotator = Annotator(self.im0, self.tf, self.names) self.annotator.draw_region(reg_pts=self.reg_pts, color=(0, 255, 0)) for box, track_id, cls in zip(boxes, track_ids, clss): self.annotator.box_label(box, label=self.names[cls], color=colors(int(cls), True)) # Draw bounding box # Draw Tracks track_line = self.track_history[track_id] track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) if len(track_line) > 30: track_line.pop(0) if self.draw_tracks: self.annotator.draw_centroid_and_tracks(track_line, color=(0, 255, 0), track_thickness=self.track_thickness) # Count objects if self.counting_region.contains(Point(track_line[-1])): if track_id not in self.counting_list: self.counting_list.append(track_id) if box[0] < self.counting_region.centroid.x: self.out_counts += 1 else: self.in_counts += 1 if self.view_img: incount_label = 'InCount : ' + f'{self.in_counts}' outcount_label = 'OutCount : ' + f'{self.out_counts}' self.annotator.count_labels(in_count=incount_label, out_count=outcount_label) cv2.namedWindow('Ultralytics YOLOv8 Object Counter') cv2.setMouseCallback('Ultralytics YOLOv8 Object Counter', self.mouse_event_for_region, {'region_points': self.reg_pts}) cv2.imshow('Ultralytics YOLOv8 Object Counter', self.im0) # Break Window if cv2.waitKey(1) & 0xFF == ord('q'): return def start_counting(self, im0, tracks): """ Main function to start the object counting process. Args: im0 (ndarray): Current frame from the video stream. tracks (list): List of tracks obtained from the object tracking process. """ self.im0 = im0 # store image if tracks[0].boxes.id is None: return self.extract_and_process_tracks(tracks) return self.im0 if __name__ == '__main__': ObjectCounter()