from ultralytics import YOLOv10, YOLO, YOLOv10PGT # from ultralytics.engine.pgt_trainer import PGTTrainer import os from ultralytics.models.yolo.segment import PGTSegmentationTrainer import argparse from datetime import datetime import torch # nohup python run_pgt_train.py --device 7 > ./output_logs/gpu7_yolov10_pgt_train.log 2>&1 & def main(args): model = YOLOv10PGT('yolov10n.pt') if args.pgt_coeff is None: model.train(data=args.data_yaml, epochs=args.epochs, batch=args.batch_size) else: model.train( data=args.data_yaml, epochs=args.epochs, batch=args.batch_size, # amp=False, pgt_coeff=args.pgt_coeff, # cfg='pgt_train.yaml', # Load and train model with the config file ) # If you want to finetune the model with pretrained weights, you could load the # pretrained weights like below # model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # or # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt # model = YOLOv10('yolov10n.pt', task='segment') # Create a directory to save model weights if it doesn't exist model_weights_dir = 'model_weights' if not os.path.exists(model_weights_dir): os.makedirs(model_weights_dir) # Save the trained model with a unique name based on the current date and time current_time = datetime.now().strftime('%Y%m%d_%H%M%S') data_yaml_base = os.path.splitext(os.path.basename(args.data_yaml))[0] model_save_path = os.path.join(model_weights_dir, f'yolov10_{data_yaml_base}_trained_{current_time}.pt') model.save(model_save_path) # torch.save(trainer.model.state_dict(), model_save_path) # Evaluate the model on the validation set results = model.val(data=args.data_yaml) # Print the evaluation results print(results) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Train YOLOv10 model with PGT segmentation.') parser.add_argument('--device', type=str, default='0', help='CUDA device number') parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training') parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training') parser.add_argument('--data_yaml', type=str, default='coco.yaml', help='Path to the data YAML file') parser.add_argument('--pgt_coeff', type=float, default=None, help='Coefficient for PGT') args = parser.parse_args() # Set CUDA device (only needed for multi-gpu machines) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = args.device main(args)