# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
YOLO-NAS model interface.

Usage - Predict:
    from ultralytics import NAS

    model = NAS('yolo_nas_s')
    results = model.predict('ultralytics/assets/bus.jpg')
"""

from pathlib import Path

import torch

from ultralytics.cfg import get_cfg
from ultralytics.engine.exporter import Exporter
from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir
from ultralytics.utils.checks import check_imgsz
from ultralytics.utils.torch_utils import model_info, smart_inference_mode

from .predict import NASPredictor
from .val import NASValidator


class NAS:

    def __init__(self, model='yolo_nas_s.pt') -> None:
        # Load or create new NAS model
        import super_gradients

        self.predictor = None
        suffix = Path(model).suffix
        if suffix == '.pt':
            self._load(model)
        elif suffix == '':
            self.model = super_gradients.training.models.get(model, pretrained_weights='coco')
        self.task = 'detect'
        self.model.args = DEFAULT_CFG_DICT  # attach args to model

        # Standardize model
        self.model.fuse = lambda verbose=True: self.model
        self.model.stride = torch.tensor([32])
        self.model.names = dict(enumerate(self.model._class_names))
        self.model.is_fused = lambda: False  # for info()
        self.model.yaml = {}  # for info()
        self.model.pt_path = model  # for export()
        self.model.task = 'detect'  # for export()
        self.info()

    @smart_inference_mode()
    def _load(self, weights: str):
        self.model = torch.load(weights)

    @smart_inference_mode()
    def predict(self, source=None, stream=False, **kwargs):
        """
        Perform prediction using the YOLO model.

        Args:
            source (str | int | PIL | np.ndarray): The source of the image to make predictions on.
                          Accepts all source types accepted by the YOLO model.
            stream (bool): Whether to stream the predictions or not. Defaults to False.
            **kwargs : Additional keyword arguments passed to the predictor.
                       Check the 'configuration' section in the documentation for all available options.

        Returns:
            (List[ultralytics.engine.results.Results]): The prediction results.
        """
        if source is None:
            source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg'
            LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
        overrides = dict(conf=0.25, task='detect', mode='predict')
        overrides.update(kwargs)  # prefer kwargs
        if not self.predictor:
            self.predictor = NASPredictor(overrides=overrides)
            self.predictor.setup_model(model=self.model)
        else:  # only update args if predictor is already setup
            self.predictor.args = get_cfg(self.predictor.args, overrides)
        return self.predictor(source, stream=stream)

    def train(self, **kwargs):
        """Function trains models but raises an error as NAS models do not support training."""
        raise NotImplementedError("NAS models don't support training")

    def val(self, **kwargs):
        """Run validation given dataset."""
        overrides = dict(task='detect', mode='val')
        overrides.update(kwargs)  # prefer kwargs
        args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
        args.imgsz = check_imgsz(args.imgsz, max_dim=1)
        validator = NASValidator(args=args)
        validator(model=self.model)
        self.metrics = validator.metrics
        return validator.metrics

    @smart_inference_mode()
    def export(self, **kwargs):
        """
        Export model.

        Args:
            **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
        """
        overrides = dict(task='detect')
        overrides.update(kwargs)
        overrides['mode'] = 'export'
        args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides)
        args.task = self.task
        if args.imgsz == DEFAULT_CFG.imgsz:
            args.imgsz = self.model.args['imgsz']  # use trained imgsz unless custom value is passed
        if args.batch == DEFAULT_CFG.batch:
            args.batch = 1  # default to 1 if not modified
        return Exporter(overrides=args)(model=self.model)

    def info(self, detailed=False, verbose=True):
        """
        Logs model info.

        Args:
            detailed (bool): Show detailed information about model.
            verbose (bool): Controls verbosity.
        """
        return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)

    def __call__(self, source=None, stream=False, **kwargs):
        """Calls the 'predict' function with given arguments to perform object detection."""
        return self.predict(source, stream, **kwargs)

    def __getattr__(self, attr):
        """Raises error if object has no requested attribute."""
        name = self.__class__.__name__
        raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")