# import cv2 # from PIL import Image # from ultralytics import YOLOv10 # # # model = YOLOv10.from_pretrained('jameslahm/yolov10x') # model = YOLOv10('model.onnx') # # # img1 = cv2.imread("ultralytics/assets/83.jpg") # # img2 = cv2.imread("ultralytics/assets/101.jpg") # # source1 = Image.open("ultralytics/assets/101.jpg") # # source2 = Image.open("ultralytics/assets/83.jpg") # img1 = "ultralytics/assets/83.jpg" # img2 = "ultralytics/assets/101.jpg" # # results = model.predict([img1, img2], conf=0.35) # # for result in results: # result.show() # # print(results[0].tojson()) import cv2 import numpy as np from PIL import Image from ultralytics import YOLOv10 # Ensure images are loaded and converted to NumPy arrays correctly def load_image(image_path): img = Image.open(image_path) # Load with PIL return np.array(img) # Convert to NumPy array # Load model model = YOLOv10('model.onnx') # Load images img1 = load_image("ultralytics/assets/83.jpg") img2 = load_image("ultralytics/assets/101.jpg") # Predict results = model.predict([img1, img2], conf=0.35) # Show results for result in results: result.show() print(results[0].tojson())