# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
import inspect
import logging.config
import os
import platform
import re
import subprocess
import sys
import tempfile
import threading
import urllib
import uuid
from pathlib import Path
from types import SimpleNamespace
from typing import Union

import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import yaml

from ultralytics import __version__

# PyTorch Multi-GPU DDP Constants
RANK = int(os.getenv('RANK', -1))
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))

# Other Constants
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2]  # YOLO
DEFAULT_CFG_PATH = ROOT / 'yolo/cfg/default.yaml'
NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
AUTOINSTALL = str(os.getenv('YOLO_AUTOINSTALL', True)).lower() == 'true'  # global auto-install mode
VERBOSE = str(os.getenv('YOLO_VERBOSE', True)).lower() == 'true'  # global verbose mode
TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}'  # tqdm bar format
LOGGING_NAME = 'ultralytics'
MACOS, LINUX, WINDOWS = (platform.system() == x for x in ['Darwin', 'Linux', 'Windows'])  # environment booleans
HELP_MSG = \
    """
    Usage examples for running YOLOv8:

    1. Install the ultralytics package:

        pip install ultralytics

    2. Use the Python SDK:

        from ultralytics import YOLO

        # Load a model
        model = YOLO('yolov8n.yaml')  # build a new model from scratch
        model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

        # Use the model
        results = model.train(data="coco128.yaml", epochs=3)  # train the model
        results = model.val()  # evaluate model performance on the validation set
        results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
        success = model.export(format='onnx')  # export the model to ONNX format

    3. Use the command line interface (CLI):

        YOLOv8 'yolo' CLI commands use the following syntax:

            yolo TASK MODE ARGS

            Where   TASK (optional) is one of [detect, segment, classify]
                    MODE (required) is one of [train, val, predict, export]
                    ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
                        See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'

        - Train a detection model for 10 epochs with an initial learning_rate of 0.01
            yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

        - Predict a YouTube video using a pretrained segmentation model at image size 320:
            yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320

        - Val a pretrained detection model at batch-size 1 and image size 640:
            yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640

        - Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
            yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128

        - Run special commands:
            yolo help
            yolo checks
            yolo version
            yolo settings
            yolo copy-cfg
            yolo cfg

    Docs: https://docs.ultralytics.com
    Community: https://community.ultralytics.com
    GitHub: https://github.com/ultralytics/ultralytics
    """

# Settings
torch.set_printoptions(linewidth=320, precision=4, profile='default')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS)  # NumExpr max threads
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'  # for deterministic training
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # suppress verbose TF compiler warnings in Colab


class SimpleClass:
    """
    Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute
    access methods for easier debugging and usage.
    """

    def __str__(self):
        """Return a human-readable string representation of the object."""
        attr = []
        for a in dir(self):
            v = getattr(self, a)
            if not callable(v) and not a.startswith('_'):
                if isinstance(v, SimpleClass):
                    # Display only the module and class name for subclasses
                    s = f'{a}: {v.__module__}.{v.__class__.__name__} object'
                else:
                    s = f'{a}: {repr(v)}'
                attr.append(s)
        return f'{self.__module__}.{self.__class__.__name__} object with attributes:\n\n' + '\n'.join(attr)

    def __repr__(self):
        """Return a machine-readable string representation of the object."""
        return self.__str__()

    def __getattr__(self, attr):
        """Custom attribute access error message with helpful information."""
        name = self.__class__.__name__
        raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")


class IterableSimpleNamespace(SimpleNamespace):
    """
    Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and
    enables usage with dict() and for loops.
    """

    def __iter__(self):
        """Return an iterator of key-value pairs from the namespace's attributes."""
        return iter(vars(self).items())

    def __str__(self):
        """Return a human-readable string representation of the object."""
        return '\n'.join(f'{k}={v}' for k, v in vars(self).items())

    def __getattr__(self, attr):
        """Custom attribute access error message with helpful information."""
        name = self.__class__.__name__
        raise AttributeError(f"""
            '{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics
            'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace
            {DEFAULT_CFG_PATH} with the latest version from
            https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml
            """)

    def get(self, key, default=None):
        """Return the value of the specified key if it exists; otherwise, return the default value."""
        return getattr(self, key, default)


def plt_settings(rcparams={'font.size': 11}, backend='Agg'):
    """
    Decorator to temporarily set rc parameters and the backend for a plotting function.

    Usage:
        decorator: @plt_settings({"font.size": 12})
        context manager: with plt_settings({"font.size": 12}):

    Args:
        rcparams (dict): Dictionary of rc parameters to set.
        backend (str, optional): Name of the backend to use. Defaults to 'Agg'.

    Returns:
        callable: Decorated function with temporarily set rc parameters and backend.
    """

    def decorator(func):

        def wrapper(*args, **kwargs):
            original_backend = plt.get_backend()
            plt.switch_backend(backend)

            with plt.rc_context(rcparams):
                result = func(*args, **kwargs)

            plt.switch_backend(original_backend)
            return result

        return wrapper

    return decorator


def set_logging(name=LOGGING_NAME, verbose=True):
    # sets up logging for the given name
    rank = int(os.getenv('RANK', -1))  # rank in world for Multi-GPU trainings
    level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
    logging.config.dictConfig({
        'version': 1,
        'disable_existing_loggers': False,
        'formatters': {
            name: {
                'format': '%(message)s'}},
        'handlers': {
            name: {
                'class': 'logging.StreamHandler',
                'formatter': name,
                'level': level}},
        'loggers': {
            name: {
                'level': level,
                'handlers': [name],
                'propagate': False}}})


class EmojiFilter(logging.Filter):
    """
    A custom logging filter class for removing emojis in log messages.

    This filter is particularly useful for ensuring compatibility with Windows terminals
    that may not support the display of emojis in log messages.
    """

    def filter(self, record):
        record.msg = emojis(record.msg)
        return super().filter(record)


# Set logger
set_logging(LOGGING_NAME, verbose=VERBOSE)  # run before defining LOGGER
LOGGER = logging.getLogger(LOGGING_NAME)  # define globally (used in train.py, val.py, detect.py, etc.)
if WINDOWS:  # emoji-safe logging
    LOGGER.addFilter(EmojiFilter())


def yaml_save(file='data.yaml', data=None):
    """
    Save YAML data to a file.

    Args:
        file (str, optional): File name. Default is 'data.yaml'.
        data (dict, optional): Data to save in YAML format. Default is None.

    Returns:
        None: Data is saved to the specified file.
    """
    file = Path(file)
    if not file.parent.exists():
        # Create parent directories if they don't exist
        file.parent.mkdir(parents=True, exist_ok=True)

    with open(file, 'w') as f:
        # Dump data to file in YAML format, converting Path objects to strings
        yaml.safe_dump({k: str(v) if isinstance(v, Path) else v
                        for k, v in data.items()},
                       f,
                       sort_keys=False,
                       allow_unicode=True)


def yaml_load(file='data.yaml', append_filename=False):
    """
    Load YAML data from a file.

    Args:
        file (str, optional): File name. Default is 'data.yaml'.
        append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False.

    Returns:
        dict: YAML data and file name.
    """
    with open(file, errors='ignore', encoding='utf-8') as f:
        s = f.read()  # string

        # Remove special characters
        if not s.isprintable():
            s = re.sub(r'[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+', '', s)

        # Add YAML filename to dict and return
        return {**yaml.safe_load(s), 'yaml_file': str(file)} if append_filename else yaml.safe_load(s)


def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
    """
    Pretty prints a yaml file or a yaml-formatted dictionary.

    Args:
        yaml_file: The file path of the yaml file or a yaml-formatted dictionary.

    Returns:
        None
    """
    yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
    dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
    LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}")


# Default configuration
DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH)
for k, v in DEFAULT_CFG_DICT.items():
    if isinstance(v, str) and v.lower() == 'none':
        DEFAULT_CFG_DICT[k] = None
DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys()
DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT)


def is_colab():
    """
    Check if the current script is running inside a Google Colab notebook.

    Returns:
        bool: True if running inside a Colab notebook, False otherwise.
    """
    return 'COLAB_RELEASE_TAG' in os.environ or 'COLAB_BACKEND_VERSION' in os.environ


def is_kaggle():
    """
    Check if the current script is running inside a Kaggle kernel.

    Returns:
        bool: True if running inside a Kaggle kernel, False otherwise.
    """
    return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'


def is_jupyter():
    """
    Check if the current script is running inside a Jupyter Notebook.
    Verified on Colab, Jupyterlab, Kaggle, Paperspace.

    Returns:
        bool: True if running inside a Jupyter Notebook, False otherwise.
    """
    with contextlib.suppress(Exception):
        from IPython import get_ipython
        return get_ipython() is not None
    return False


def is_docker() -> bool:
    """
    Determine if the script is running inside a Docker container.

    Returns:
        bool: True if the script is running inside a Docker container, False otherwise.
    """
    file = Path('/proc/self/cgroup')
    if file.exists():
        with open(file) as f:
            return 'docker' in f.read()
    else:
        return False


def is_online() -> bool:
    """
    Check internet connectivity by attempting to connect to a known online host.

    Returns:
        bool: True if connection is successful, False otherwise.
    """
    import socket

    for server in '1.1.1.1', '8.8.8.8', '223.5.5.5':  # Cloudflare, Google, AliDNS:
        try:
            socket.create_connection((server, 53), timeout=2)  # connect to (server, port=53)
            return True
        except (socket.timeout, socket.gaierror, OSError):
            continue
    return False


ONLINE = is_online()


def is_pip_package(filepath: str = __name__) -> bool:
    """
    Determines if the file at the given filepath is part of a pip package.

    Args:
        filepath (str): The filepath to check.

    Returns:
        bool: True if the file is part of a pip package, False otherwise.
    """
    import importlib.util

    # Get the spec for the module
    spec = importlib.util.find_spec(filepath)

    # Return whether the spec is not None and the origin is not None (indicating it is a package)
    return spec is not None and spec.origin is not None


def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
    """
    Check if a directory is writeable.

    Args:
        dir_path (str) or (Path): The path to the directory.

    Returns:
        bool: True if the directory is writeable, False otherwise.
    """
    try:
        with tempfile.TemporaryFile(dir=dir_path):
            pass
        return True
    except OSError:
        return False


def is_pytest_running():
    """
    Determines whether pytest is currently running or not.

    Returns:
        (bool): True if pytest is running, False otherwise.
    """
    return ('PYTEST_CURRENT_TEST' in os.environ) or ('pytest' in sys.modules) or ('pytest' in Path(sys.argv[0]).stem)


def is_github_actions_ci() -> bool:
    """
    Determine if the current environment is a GitHub Actions CI Python runner.

    Returns:
        (bool): True if the current environment is a GitHub Actions CI Python runner, False otherwise.
    """
    return 'GITHUB_ACTIONS' in os.environ and 'RUNNER_OS' in os.environ and 'RUNNER_TOOL_CACHE' in os.environ


def is_git_dir():
    """
    Determines whether the current file is part of a git repository.
    If the current file is not part of a git repository, returns None.

    Returns:
        (bool): True if current file is part of a git repository.
    """
    return get_git_dir() is not None


def get_git_dir():
    """
    Determines whether the current file is part of a git repository and if so, returns the repository root directory.
    If the current file is not part of a git repository, returns None.

    Returns:
        (Path) or (None): Git root directory if found or None if not found.
    """
    for d in Path(__file__).parents:
        if (d / '.git').is_dir():
            return d
    return None  # no .git dir found


def get_git_origin_url():
    """
    Retrieves the origin URL of a git repository.

    Returns:
        (str) or (None): The origin URL of the git repository.
    """
    if is_git_dir():
        with contextlib.suppress(subprocess.CalledProcessError):
            origin = subprocess.check_output(['git', 'config', '--get', 'remote.origin.url'])
            return origin.decode().strip()
    return None  # if not git dir or on error


def get_git_branch():
    """
    Returns the current git branch name. If not in a git repository, returns None.

    Returns:
        (str) or (None): The current git branch name.
    """
    if is_git_dir():
        with contextlib.suppress(subprocess.CalledProcessError):
            origin = subprocess.check_output(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
            return origin.decode().strip()
    return None  # if not git dir or on error


def get_default_args(func):
    """Returns a dictionary of default arguments for a function.

    Args:
        func (callable): The function to inspect.

    Returns:
        dict: A dictionary where each key is a parameter name, and each value is the default value of that parameter.
    """
    signature = inspect.signature(func)
    return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}


def get_user_config_dir(sub_dir='Ultralytics'):
    """
    Get the user config directory.

    Args:
        sub_dir (str): The name of the subdirectory to create.

    Returns:
        Path: The path to the user config directory.
    """
    # Return the appropriate config directory for each operating system
    if WINDOWS:
        path = Path.home() / 'AppData' / 'Roaming' / sub_dir
    elif MACOS:  # macOS
        path = Path.home() / 'Library' / 'Application Support' / sub_dir
    elif LINUX:
        path = Path.home() / '.config' / sub_dir
    else:
        raise ValueError(f'Unsupported operating system: {platform.system()}')

    # GCP and AWS lambda fix, only /tmp is writeable
    if not is_dir_writeable(str(path.parent)):
        path = Path('/tmp') / sub_dir

    # Create the subdirectory if it does not exist
    path.mkdir(parents=True, exist_ok=True)

    return path


USER_CONFIG_DIR = Path(os.getenv('YOLO_CONFIG_DIR', get_user_config_dir()))  # Ultralytics settings dir
SETTINGS_YAML = USER_CONFIG_DIR / 'settings.yaml'


def emojis(string=''):
    # Return platform-dependent emoji-safe version of string
    return string.encode().decode('ascii', 'ignore') if WINDOWS else string


def colorstr(*input):
    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
    colors = {
        'black': '\033[30m',  # basic colors
        'red': '\033[31m',
        'green': '\033[32m',
        'yellow': '\033[33m',
        'blue': '\033[34m',
        'magenta': '\033[35m',
        'cyan': '\033[36m',
        'white': '\033[37m',
        'bright_black': '\033[90m',  # bright colors
        'bright_red': '\033[91m',
        'bright_green': '\033[92m',
        'bright_yellow': '\033[93m',
        'bright_blue': '\033[94m',
        'bright_magenta': '\033[95m',
        'bright_cyan': '\033[96m',
        'bright_white': '\033[97m',
        'end': '\033[0m',  # misc
        'bold': '\033[1m',
        'underline': '\033[4m'}
    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']


class TryExcept(contextlib.ContextDecorator):
    # YOLOv8 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
    def __init__(self, msg='', verbose=True):
        self.msg = msg
        self.verbose = verbose

    def __enter__(self):
        pass

    def __exit__(self, exc_type, value, traceback):
        if self.verbose and value:
            print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
        return True


def threaded(func):
    # Multi-threads a target function and returns thread. Usage: @threaded decorator
    def wrapper(*args, **kwargs):
        thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
        thread.start()
        return thread

    return wrapper


def set_sentry():
    """
    Initialize the Sentry SDK for error tracking and reporting if pytest is not currently running.
    """

    def before_send(event, hint):
        if 'exc_info' in hint:
            exc_type, exc_value, tb = hint['exc_info']
            if exc_type in (KeyboardInterrupt, FileNotFoundError) \
                    or 'out of memory' in str(exc_value):
                return None  # do not send event

        event['tags'] = {
            'sys_argv': sys.argv[0],
            'sys_argv_name': Path(sys.argv[0]).name,
            'install': 'git' if is_git_dir() else 'pip' if is_pip_package() else 'other',
            'os': ENVIRONMENT}
        return event

    if SETTINGS['sync'] and \
            RANK in (-1, 0) and \
            Path(sys.argv[0]).name == 'yolo' and \
            not TESTS_RUNNING and \
            ONLINE and \
            ((is_pip_package() and not is_git_dir()) or
             (get_git_origin_url() == 'https://github.com/ultralytics/ultralytics.git' and get_git_branch() == 'main')):

        import sentry_sdk  # noqa
        sentry_sdk.init(
            dsn='https://f805855f03bb4363bc1e16cb7d87b654@o4504521589325824.ingest.sentry.io/4504521592406016',
            debug=False,
            traces_sample_rate=1.0,
            release=__version__,
            environment='production',  # 'dev' or 'production'
            before_send=before_send,
            ignore_errors=[KeyboardInterrupt, FileNotFoundError])
        sentry_sdk.set_user({'id': SETTINGS['uuid']})

        # Disable all sentry logging
        for logger in 'sentry_sdk', 'sentry_sdk.errors':
            logging.getLogger(logger).setLevel(logging.CRITICAL)


def get_settings(file=SETTINGS_YAML, version='0.0.3'):
    """
    Loads a global Ultralytics settings YAML file or creates one with default values if it does not exist.

    Args:
        file (Path): Path to the Ultralytics settings YAML file. Defaults to 'settings.yaml' in the USER_CONFIG_DIR.
        version (str): Settings version. If min settings version not met, new default settings will be saved.

    Returns:
        dict: Dictionary of settings key-value pairs.
    """
    import hashlib

    from ultralytics.yolo.utils.checks import check_version
    from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first

    git_dir = get_git_dir()
    root = git_dir or Path()
    datasets_root = (root.parent if git_dir and is_dir_writeable(root.parent) else root).resolve()
    defaults = {
        'datasets_dir': str(datasets_root / 'datasets'),  # default datasets directory.
        'weights_dir': str(root / 'weights'),  # default weights directory.
        'runs_dir': str(root / 'runs'),  # default runs directory.
        'uuid': hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),  # anonymized uuid hash
        'sync': True,  # sync analytics to help with YOLO development
        'api_key': '',  # Ultralytics HUB API key (https://hub.ultralytics.com/)
        'settings_version': version}  # Ultralytics settings version

    with torch_distributed_zero_first(RANK):
        if not file.exists():
            yaml_save(file, defaults)
        settings = yaml_load(file)

        # Check that settings keys and types match defaults
        correct = \
            settings \
            and settings.keys() == defaults.keys() \
            and all(type(a) == type(b) for a, b in zip(settings.values(), defaults.values())) \
            and check_version(settings['settings_version'], version)
        if not correct:
            LOGGER.warning('WARNING ⚠️ Ultralytics settings reset to defaults. This is normal and may be due to a '
                           'recent ultralytics package update, but may have overwritten previous settings. '
                           f"\nView and update settings with 'yolo settings' or at '{file}'")
            settings = defaults  # merge **defaults with **settings (prefer **settings)
            yaml_save(file, settings)  # save updated defaults

        return settings


def set_settings(kwargs, file=SETTINGS_YAML):
    """
    Function that runs on a first-time ultralytics package installation to set up global settings and create necessary
    directories.
    """
    SETTINGS.update(kwargs)
    yaml_save(file, SETTINGS)


def deprecation_warn(arg, new_arg, version=None):
    if not version:
        version = float(__version__[:3]) + 0.2  # deprecate after 2nd major release
    LOGGER.warning(f"WARNING ⚠️ '{arg}' is deprecated and will be removed in 'ultralytics {version}' in the future. "
                   f"Please use '{new_arg}' instead.")


def clean_url(url):
    # Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt
    url = str(Path(url)).replace(':/', '://')  # Pathlib turns :// -> :/
    return urllib.parse.unquote(url).split('?')[0]  # '%2F' to '/', split https://url.com/file.txt?auth


def url2file(url):
    # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
    return Path(clean_url(url)).name


# Run below code on yolo/utils init ------------------------------------------------------------------------------------

# Check first-install steps
PREFIX = colorstr('Ultralytics: ')
SETTINGS = get_settings()
DATASETS_DIR = Path(SETTINGS['datasets_dir'])  # global datasets directory
ENVIRONMENT = 'Colab' if is_colab() else 'Kaggle' if is_kaggle() else 'Jupyter' if is_jupyter() else \
    'Docker' if is_docker() else platform.system()
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
set_sentry()