--- comments: true description: Azure Machine Learning YOLOv8 quickstart keywords: Ultralytics, YOLO, Deep Learning, Object detection, quickstart, Azure, AzureML --- # YOLOv8 🚀 on AzureML Note that this guide is only for quick trials from a compute terminal or from a Notebook. If you want to unlock the full power AzureML, you can find the documentation to: - [Create a data asset](https://learn.microsoft.com/azure/machine-learning/how-to-create-data-assets) - [Create an AzureML job](https://learn.microsoft.com/azure/machine-learning/how-to-train-model) - [Register a model](https://learn.microsoft.com/azure/machine-learning/how-to-manage-models) - [Train YOLOv8 with the AzureML Python SDK](https://medium.com/@ouphi/how-to-train-the-yolov8-model-with-azure-machine-learning-python-sdk-8268696be8ba) - [Train YOLOv8 with the Azureml cli](https://medium.com/@ouphi/how-to-train-the-yolov8-model-with-azureml-and-the-az-cli-73d3c870ba8e) ## Prerequisites You need an [AzureML workspace](https://learn.microsoft.com/azure/machine-learning/concept-workspace?view=azureml-api-2). ## Create a compute instance From your AzureML workspace, select Compute > Compute instances > New, select the instance with the resources you need. create-compute-arrow ## Quickstart from Terminal Start your compute and open a Terminal: ![open-terminal](https://github.com/ouphi/ultralytics/assets/17216799/635152f1-f4a3-4261-b111-d416cb5ef357) ### Create virtualenv Create your conda virtualenv and install pip in it: ```bash conda create --name yolov8env -y conda activate yolov8env conda install pip -y ``` Install the required dependencies: ```bash cd ultralytics pip install -r requirements.txt pip install ultralytics pip install onnx>=1.12.0 ``` ### Perform YOLOv8 tasks Predict: ```bash yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' ``` Train a detection model for 10 epochs with an initial learning_rate of 0.01: ```bash yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 ``` You can find more [instructions to use the Ultralytics cli here](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli). ## Quickstart from a Notebook ### Create a new IPython kernel Open the compute Terminal. ![open-terminal](https://github.com/ouphi/ultralytics/assets/17216799/635152f1-f4a3-4261-b111-d416cb5ef357) From your compute terminal, you need to create a new ipykernel that will be used by your notebook to manage your dependencies: ```bash conda create --name yolov8env -y conda activate yolov8env conda install pip -y conda install ipykernel -y python -m ipykernel install --user --name yolov8env --display-name "yolov8env" ``` Close your terminal and create a new notebook. From your Notebook, you can select the new kernel. Then you can open a Notebook cell and install the required dependencies: ```bash %%bash source activate yolov8env cd ultralytics pip install -r requirements.txt pip install ultralytics pip install onnx>=1.12.0 ``` Note that we need to use the `source activate yolov8env` for all the %%bash cells, to make sure that the %%bash cell uses environment we want. Run some predictions using the [Ultralytics CLI](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli): ```bash %%bash source activate yolov8env yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' ``` Or with the [Ultralytics Python interface](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-python), for example to train the model: ```python from ultralytics import YOLO # Load a model model = YOLO("yolov8n.pt") # load an official YOLOv8n model # Use the model model.train(data="coco128.yaml", epochs=3) # train the model metrics = model.val() # evaluate model performance on the validation set results = model("https://ultralytics.com/images/bus.jpg") # predict on an image path = model.export(format="onnx") # export the model to ONNX format ```