---
comments: true
description: Learn how to load YOLOv5🚀 from PyTorch Hub at https://pytorch.org/hub/ultralytics_yolov5 and perform image inference. UPDATED 26 March 2023.
keywords: YOLOv5, PyTorch Hub, object detection, computer vision, machine learning, artificial intelligence
---

📚 This guide explains how to load YOLOv5 🚀 from PyTorch Hub at [https://pytorch.org/hub/ultralytics_yolov5](https://pytorch.org/hub/ultralytics_yolov5).  
UPDATED 26 March 2023.

## Before You Start

Install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.7.0**](https://www.python.org/) environment, including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).

```bash
pip install -r https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt
```

💡 ProTip: Cloning [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5) is **not** required 😃

## Load YOLOv5 with PyTorch Hub

### Simple Example

This example loads a pretrained YOLOv5s model from PyTorch Hub as `model` and passes an image for inference. `'yolov5s'` is the lightest and fastest YOLOv5 model. For details on all available models please see the [README](https://github.com/ultralytics/yolov5#pretrained-checkpoints).

```python
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Image
im = 'https://ultralytics.com/images/zidane.jpg'

# Inference
results = model(im)

results.pandas().xyxy[0]
#      xmin    ymin    xmax   ymax  confidence  class    name
# 0  749.50   43.50  1148.0  704.5    0.874023      0  person
# 1  433.50  433.50   517.5  714.5    0.687988     27     tie
# 2  114.75  195.75  1095.0  708.0    0.624512      0  person
# 3  986.00  304.00  1028.0  420.0    0.286865     27     tie
```

### Detailed Example

This example shows **batched inference** with **PIL** and **OpenCV** image sources. `results` can be **printed** to console, **saved** to `runs/hub`, **showed** to screen on supported environments, and returned as **tensors** or **pandas** dataframes.

```python
import cv2
import torch
from PIL import Image

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Images
for f in 'zidane.jpg', 'bus.jpg':
    torch.hub.download_url_to_file('https://ultralytics.com/images/' + f, f)  # download 2 images
im1 = Image.open('zidane.jpg')  # PIL image
im2 = cv2.imread('bus.jpg')[..., ::-1]  # OpenCV image (BGR to RGB)

# Inference
results = model([im1, im2], size=640) # batch of images

# Results
results.print()  
results.save()  # or .show()

results.xyxy[0]  # im1 predictions (tensor)
results.pandas().xyxy[0]  # im1 predictions (pandas)
#      xmin    ymin    xmax   ymax  confidence  class    name
# 0  749.50   43.50  1148.0  704.5    0.874023      0  person
# 1  433.50  433.50   517.5  714.5    0.687988     27     tie
# 2  114.75  195.75  1095.0  708.0    0.624512      0  person
# 3  986.00  304.00  1028.0  420.0    0.286865     27     tie
```

<img src="https://user-images.githubusercontent.com/26833433/124915064-62a49e00-dff1-11eb-86b3-a85b97061afb.jpg" width="500">  <img src="https://user-images.githubusercontent.com/26833433/124915055-60424400-dff1-11eb-9055-24585b375a29.jpg" width="300">

For all inference options see YOLOv5 `AutoShape()` forward [method](https://github.com/ultralytics/yolov5/blob/30e4c4f09297b67afedf8b2bcd851833ddc9dead/models/common.py#L243-L252).

### Inference Settings

YOLOv5 models contain various inference attributes such as **confidence threshold**, **IoU threshold**, etc. which can be set by:

```python
model.conf = 0.25  # NMS confidence threshold
      iou = 0.45  # NMS IoU threshold
      agnostic = False  # NMS class-agnostic
      multi_label = False  # NMS multiple labels per box
      classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
      max_det = 1000  # maximum number of detections per image
      amp = False  # Automatic Mixed Precision (AMP) inference

results = model(im, size=320)  # custom inference size
```

### Device

Models can be transferred to any device after creation:

```python
model.cpu()  # CPU
model.cuda()  # GPU
model.to(device)  # i.e. device=torch.device(0)
```

Models can also be created directly on any `device`:

```python
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', device='cpu')  # load on CPU
```

💡 ProTip: Input images are automatically transferred to the correct model device before inference.

### Silence Outputs

Models can be loaded silently with `_verbose=False`:

```python
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', _verbose=False)  # load silently
```

### Input Channels

To load a pretrained YOLOv5s model with 4 input channels rather than the default 3:

```python
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', channels=4)
```

In this case the model will be composed of pretrained weights **except for** the very first input layer, which is no longer the same shape as the pretrained input layer. The input layer will remain initialized by random weights.

### Number of Classes

To load a pretrained YOLOv5s model with 10 output classes rather than the default 80:

```python
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', classes=10)
```

In this case the model will be composed of pretrained weights **except for** the output layers, which are no longer the same shape as the pretrained output layers. The output layers will remain initialized by random weights.

### Force Reload

If you run into problems with the above steps, setting `force_reload=True` may help by discarding the existing cache and force a fresh download of the latest YOLOv5 version from PyTorch Hub.

```python
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', force_reload=True)  # force reload
```

### Screenshot Inference

To run inference on your desktop screen:

```python
import torch
from PIL import ImageGrab

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Image
im = ImageGrab.grab()  # take a screenshot

# Inference
results = model(im)
```

### Multi-GPU Inference

YOLOv5 models can be loaded to multiple GPUs in parallel with threaded inference:

```python
import torch
import threading

def run(model, im):
  results = model(im)
  results.save()

# Models
model0 = torch.hub.load('ultralytics/yolov5', 'yolov5s', device=0)
model1 = torch.hub.load('ultralytics/yolov5', 'yolov5s', device=1)

# Inference
threading.Thread(target=run, args=[model0, 'https://ultralytics.com/images/zidane.jpg'], daemon=True).start()
threading.Thread(target=run, args=[model1, 'https://ultralytics.com/images/bus.jpg'], daemon=True).start()
```

### Training

To load a YOLOv5 model for training rather than inference, set `autoshape=False`. To load a model with randomly initialized weights (to train from scratch) use `pretrained=False`. You must provide your own training script in this case. Alternatively see our YOLOv5 [Train Custom Data Tutorial](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) for model training.

```python
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)  # load pretrained
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False, pretrained=False)  # load scratch
```

### Base64 Results

For use with API services. See https://github.com/ultralytics/yolov5/pull/2291 and [Flask REST API](https://github.com/ultralytics/yolov5/tree/master/utils/flask_rest_api) example for details.

```python
results = model(im)  # inference

results.ims # array of original images (as np array) passed to model for inference
results.render()  # updates results.ims with boxes and labels
for im in results.ims:
    buffered = BytesIO()
    im_base64 = Image.fromarray(im)
    im_base64.save(buffered, format="JPEG")
    print(base64.b64encode(buffered.getvalue()).decode('utf-8'))  # base64 encoded image with results
```

### Cropped Results

Results can be returned and saved as detection crops:

```python
results = model(im)  # inference
crops = results.crop(save=True)  # cropped detections dictionary
```

### Pandas Results

Results can be returned as [Pandas DataFrames](https://pandas.pydata.org/):

```python
results = model(im)  # inference
results.pandas().xyxy[0]  # Pandas DataFrame
```

<details markdown>
  <summary>Pandas Output (click to expand)</summary>

```python
print(results.pandas().xyxy[0])
#      xmin    ymin    xmax   ymax  confidence  class    name
# 0  749.50   43.50  1148.0  704.5    0.874023      0  person
# 1  433.50  433.50   517.5  714.5    0.687988     27     tie
# 2  114.75  195.75  1095.0  708.0    0.624512      0  person
# 3  986.00  304.00  1028.0  420.0    0.286865     27     tie
```

</details>

### Sorted Results

Results can be sorted by column, i.e. to sort license plate digit detection left-to-right (x-axis):

```python
results = model(im)  # inference
results.pandas().xyxy[0].sort_values('xmin')  # sorted left-right
```

### Box-Cropped Results

Results can be returned and saved as detection crops:

```python
results = model(im)  # inference
crops = results.crop(save=True)  # cropped detections dictionary
```

### JSON Results

Results can be returned in JSON format once converted to `.pandas()` dataframes using the `.to_json()` method. The JSON format can be modified using the `orient` argument. See pandas `.to_json()` [documentation](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html) for details.

```python
results = model(ims)  # inference
results.pandas().xyxy[0].to_json(orient="records")  # JSON img1 predictions
```

<details markdown>
  <summary>JSON Output (click to expand)</summary>

```json
[
{"xmin":749.5,"ymin":43.5,"xmax":1148.0,"ymax":704.5,"confidence":0.8740234375,"class":0,"name":"person"},
{"xmin":433.5,"ymin":433.5,"xmax":517.5,"ymax":714.5,"confidence":0.6879882812,"class":27,"name":"tie"},
{"xmin":115.25,"ymin":195.75,"xmax":1096.0,"ymax":708.0,"confidence":0.6254882812,"class":0,"name":"person"},
{"xmin":986.0,"ymin":304.0,"xmax":1028.0,"ymax":420.0,"confidence":0.2873535156,"class":27,"name":"tie"}
]
```

</details>

## Custom Models

This example loads a custom 20-class [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml)-trained YOLOv5s model `'best.pt'` with PyTorch Hub.

```python
model = torch.hub.load('ultralytics/yolov5', 'custom', path='path/to/best.pt')  # local model
model = torch.hub.load('path/to/yolov5', 'custom', path='path/to/best.pt', source='local')  # local repo
```

## TensorRT, ONNX and OpenVINO Models

PyTorch Hub supports inference on most YOLOv5 export formats, including custom trained models. See [TFLite, ONNX, CoreML, TensorRT Export tutorial](https://docs.ultralytics.com/yolov5/tutorials/model_export) for details on exporting models.

💡 ProTip: **TensorRT** may be up to 2-5X faster than PyTorch on [**GPU benchmarks**](https://github.com/ultralytics/yolov5/pull/6963)  
💡 ProTip: **ONNX** and **OpenVINO** may be up to 2-3X faster than PyTorch on [**CPU benchmarks**](https://github.com/ultralytics/yolov5/pull/6613)

```python
model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5s.pt')  # PyTorch
                                                            'yolov5s.torchscript')  # TorchScript
                                                            'yolov5s.onnx')  # ONNX
                                                            'yolov5s_openvino_model/')  # OpenVINO
                                                            'yolov5s.engine')  # TensorRT
                                                            'yolov5s.mlmodel')  # CoreML (macOS-only)
                                                            'yolov5s.tflite')  # TFLite
                                                            'yolov5s_paddle_model/')  # PaddlePaddle
```

## Environments

YOLOv5 is designed to be run in the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):

- **Notebooks** with free GPU: <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial/)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial/)
- **Docker Image**. See [Docker Quickstart Guide](https://docs.ultralytics.com/yolov5/environments/docker_image_quickstart_tutorial/) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>

## Status

<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>

If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 [training](https://github.com/ultralytics/yolov5/blob/master/train.py), [validation](https://github.com/ultralytics/yolov5/blob/master/val.py), [inference](https://github.com/ultralytics/yolov5/blob/master/detect.py), [export](https://github.com/ultralytics/yolov5/blob/master/export.py) and [benchmarks](https://github.com/ultralytics/yolov5/blob/master/benchmarks.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.