# Ultralytics YOLO 🚀, GPL-3.0 license

import contextlib
from copy import deepcopy

import thop
import torch
import torch.nn as nn

from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify,
                                    Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus,
                                    GhostBottleneck, GhostConv, Segment)
from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, yaml_load
from ultralytics.yolo.utils.checks import check_requirements, check_yaml
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_dicts, make_divisible,
                                                model_info, scale_img, time_sync)


class BaseModel(nn.Module):
    """
    The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
    """

    def forward(self, x, profile=False, visualize=False):
        """
        Forward pass of the model on a single scale.
        Wrapper for `_forward_once` method.

        Args:
            x (torch.Tensor): The input image tensor
            profile (bool): Whether to profile the model, defaults to False
            visualize (bool): Whether to return the intermediate feature maps, defaults to False

        Returns:
            (torch.Tensor): The output of the network.
        """
        return self._forward_once(x, profile, visualize)

    def _forward_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                LOGGER.info('visualize feature not yet supported')
                # TODO: feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _profile_one_layer(self, m, x, dt):
        """
        Profile the computation time and FLOPs of a single layer of the model on a given input.
        Appends the results to the provided list.

        Args:
            m (nn.Module): The layer to be profiled.
            x (torch.Tensor): The input data to the layer.
            dt (list): A list to store the computation time of the layer.

        Returns:
            None
        """
        c = m == self.model[-1]  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.clone() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.clone() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self):
        """
        Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
        computation efficiency.

        Returns:
            (nn.Module): The fused model is returned.
        """
        if not self.is_fused():
            for m in self.model.modules():
                if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
            self.info()

        return self

    def is_fused(self, thresh=10):
        """
        Check if the model has less than a certain threshold of BatchNorm layers.

        Args:
            thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.

        Returns:
            (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
        """
        bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
        return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in model

    def info(self, verbose=False, imgsz=640):
        """
        Prints model information

        Args:
            verbose (bool): if True, prints out the model information. Defaults to False
            imgsz (int): the size of the image that the model will be trained on. Defaults to 640
        """
        model_info(self, verbose, imgsz)

    def _apply(self, fn):
        """
        `_apply()` is a function that applies a function to all the tensors in the model that are not
        parameters or registered buffers

        Args:
            fn: the function to apply to the model

        Returns:
            A model that is a Detect() object.
        """
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            m.stride = fn(m.stride)
            m.anchors = fn(m.anchors)
            m.strides = fn(m.strides)
        return self

    def load(self, weights):
        """
        This function loads the weights of the model from a file

        Args:
            weights (str): The weights to load into the model.
        """
        # Force all tasks to implement this function
        raise NotImplementedError("This function needs to be implemented by derived classes!")


class DetectionModel(BaseModel):
    # YOLOv8 detection model
    def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True):  # model, input channels, number of classes
        super().__init__()
        self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True)  # cfg dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose)  # model, savelist
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.inplace = self.yaml.get('inplace', True)

        # Build strides
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            self.stride = m.stride
            m.bias_init()  # only run once

        # Init weights, biases
        initialize_weights(self)
        if verbose:
            self.info()
            LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, -1), None  # augmented inference, train

    @staticmethod
    def _descale_pred(p, flips, scale, img_size, dim=1):
        # de-scale predictions following augmented inference (inverse operation)
        p[:, :4] /= scale  # de-scale
        x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
        if flips == 2:
            y = img_size[0] - y  # de-flip ud
        elif flips == 3:
            x = img_size[1] - x  # de-flip lr
        return torch.cat((x, y, wh, cls), dim)

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][..., :-i]  # large
        i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][..., i:]  # small
        return y

    def load(self, weights, verbose=True):
        csd = weights.float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, self.state_dict())  # intersect
        self.load_state_dict(csd, strict=False)  # load
        if verbose:
            LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')


class SegmentationModel(DetectionModel):
    # YOLOv8 segmentation model
    def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
        super().__init__(cfg, ch, nc, verbose)


class ClassificationModel(BaseModel):
    # YOLOv8 classification model
    def __init__(self,
                 cfg=None,
                 model=None,
                 ch=3,
                 nc=1000,
                 cutoff=10,
                 verbose=True):  # yaml, model, channels, number of classes, cutoff index, verbose flag
        super().__init__()
        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose)

    def _from_detection_model(self, model, nc=1000, cutoff=10):
        # Create a YOLOv5 classification model from a YOLOv5 detection model
        from ultralytics.nn.autobackend import AutoBackend
        if isinstance(model, AutoBackend):
            model = model.model  # unwrap DetectMultiBackend
        model.model = model.model[:cutoff]  # backbone
        m = model.model[-1]  # last layer
        ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels  # ch into module
        c = Classify(ch, nc)  # Classify()
        c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'  # index, from, type
        model.model[-1] = c  # replace
        self.model = model.model
        self.stride = model.stride
        self.save = []
        self.nc = nc

    def _from_yaml(self, cfg, ch, nc, verbose):
        self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True)  # cfg dict
        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose)  # model, savelist
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.info()

    def load(self, weights):
        model = weights["model"] if isinstance(weights, dict) else weights  # torchvision models are not dicts
        csd = model.float().state_dict()
        csd = intersect_dicts(csd, self.state_dict())  # intersect
        self.load_state_dict(csd, strict=False)  # load

    @staticmethod
    def reshape_outputs(model, nc):
        # Update a TorchVision classification model to class count 'n' if required
        name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1]  # last module
        if isinstance(m, Classify):  # YOLO Classify() head
            if m.linear.out_features != nc:
                m.linear = nn.Linear(m.linear.in_features, nc)
        elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
            if m.out_features != nc:
                setattr(model, name, nn.Linear(m.in_features, nc))
        elif isinstance(m, nn.Sequential):
            types = [type(x) for x in m]
            if nn.Linear in types:
                i = types.index(nn.Linear)  # nn.Linear index
                if m[i].out_features != nc:
                    m[i] = nn.Linear(m[i].in_features, nc)
            elif nn.Conv2d in types:
                i = types.index(nn.Conv2d)  # nn.Conv2d index
                if m[i].out_channels != nc:
                    m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)


# Functions ------------------------------------------------------------------------------------------------------------


def torch_safe_load(weight):
    """
    This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it
    catches the error, logs a warning message, and attempts to install the missing module via the check_requirements()
    function. After installation, the function again attempts to load the model using torch.load().

    Args:
        weight (str): The file path of the PyTorch model.

    Returns:
        The loaded PyTorch model.
    """
    from ultralytics.yolo.utils.downloads import attempt_download_asset

    file = attempt_download_asset(weight)  # search online if missing locally
    try:
        return torch.load(file, map_location='cpu')  # load
    except ModuleNotFoundError as e:
        if e.name == 'omegaconf':  # e.name is missing module name
            LOGGER.warning(f"WARNING ⚠️ {weight} requires {e.name}, which is not in ultralytics requirements."
                           f"\nAutoInstall will run now for {e.name} but this feature will be removed in the future."
                           f"\nRecommend fixes are to train a new model using updated ultraltyics package or to "
                           f"download updated models from https://github.com/ultralytics/assets/releases/tag/v0.0.0")
        check_requirements(e.name)  # install missing module
        return torch.load(file, map_location='cpu')  # load


def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a

    model = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        ckpt = torch_safe_load(w)  # load ckpt
        args = {**DEFAULT_CFG_DICT, **ckpt['train_args']}  # combine model and default args, preferring model args
        ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

        # Model compatibility updates
        ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
        ckpt.pt_path = weights  # attach *.pt file path to model
        if not hasattr(ckpt, 'stride'):
            ckpt.stride = torch.tensor([32.])

        # Append
        model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval())  # model in eval mode

    # Module compatibility updates
    for m in model.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
            m.inplace = inplace  # torch 1.7.0 compatibility
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model
    if len(model) == 1:
        return model[-1]

    # Return ensemble
    print(f'Ensemble created with {weights}\n')
    for k in 'names', 'nc', 'yaml':
        setattr(model, k, getattr(model[0], k))
    model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride  # max stride
    assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
    return model


def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
    # Loads a single model weights
    ckpt = torch_safe_load(weight)  # load ckpt
    args = {**DEFAULT_CFG_DICT, **ckpt['train_args']}  # combine model and default args, preferring model args
    model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

    # Model compatibility updates
    model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
    model.pt_path = weight  # attach *.pt file path to model
    if not hasattr(model, 'stride'):
        model.stride = torch.tensor([32.])

    model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()  # model in eval mode

    # Module compatibility updates
    for m in model.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
            m.inplace = inplace  # torch 1.7.0 compatibility
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model and ckpt
    return model, ckpt


def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)
    # Parse a YOLO model.yaml dictionary
    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
                BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(args[2] * gw, 8)
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


def guess_model_task(model):
    """
    Guess the task of a PyTorch model from its architecture or configuration.

    Args:
        model (nn.Module) or (dict): PyTorch model or model configuration in YAML format.

    Returns:
        str: Task of the model ('detect', 'segment', 'classify').

    Raises:
        SyntaxError: If the task of the model could not be determined.
    """
    cfg = None
    if isinstance(model, dict):
        cfg = model
    elif isinstance(model, nn.Module):  # PyTorch model
        for x in 'model.args', 'model.model.args', 'model.model.model.args':
            with contextlib.suppress(Exception):
                return eval(x)['task']
        for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
            with contextlib.suppress(Exception):
                cfg = eval(x)
                break

    # Guess from YAML dictionary
    if cfg:
        m = cfg["head"][-1][-2].lower()  # output module name
        if m in ["classify", "classifier", "cls", "fc"]:
            return "classify"
        if m in ["detect"]:
            return "detect"
        if m in ["segment"]:
            return "segment"

    # Guess from PyTorch model
    if isinstance(model, nn.Module):
        for m in model.modules():
            if isinstance(m, Detect):
                return "detect"
            elif isinstance(m, Segment):
                return "segment"
            elif isinstance(m, Classify):
                return "classify"

    # Unable to determine task from model
    raise SyntaxError("YOLO is unable to automatically guess model task. Explicitly define task for your model, "
                      "i.e. 'task=detect', 'task=segment' or 'task=classify'.")