from ultralytics.models.yolo.detect import DetectionPredictor import torch from ultralytics.utils import ops from ultralytics.engine.results import Results import torch.nn.functional as F class YOLOv10SegPredictor(DetectionPredictor): def postprocess(self, preds, img, orig_imgs): coef,proto = None,None if isinstance(preds, dict): coef = preds['coef'] proto = preds['proto'] preds = preds["one2one"] if isinstance(preds, (list, tuple)): preds = preds[0] # [1,5,6006] coef[1,32,6006] proto[1,32,104,176] if preds.shape[-1] == 6: pass else: preds = preds.transpose(-1, -2) # [1,6006,5] coef = coef.transpose(-1, -2) # bboxes, scores, labels = ops.v10postprocess(preds, self.args.max_det, preds.shape[-1]-4) bboxes, scores, labels,segmask = ops.v10segpostprocess([preds,coef,proto], self.args.max_det, preds.shape[-1]-4) bboxes = ops.xywh2xyxy(bboxes) preds = torch.cat([bboxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1) mask = preds[..., 4] > self.args.conf if self.args.classes is not None: mask = mask & (preds[..., 5:6] == torch.tensor(self.args.classes, device=preds.device).unsqueeze(0)).any(2) preds = [p[mask[idx]] for idx, p in enumerate(preds)] segmask = [p[mask[idx]] for idx, p in enumerate(segmask)] if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] seg = segmask[i] cc,hh,ww = seg.shape seg = F.interpolate(seg[None], (hh*4, ww*4), mode="bilinear", align_corners=False)[0].gt_(0) pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) img_path = self.batch[0][i] results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred,masks=seg)) return results