# Ultralytics YOLO 🚀, AGPL-3.0 license

import math
import random
from copy import deepcopy

import cv2
import numpy as np
import torch
import torchvision.transforms as T

from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.checks import check_version
from ultralytics.utils.instance import Instances
from ultralytics.utils.metrics import bbox_ioa
from ultralytics.utils.ops import segment2box

from .utils import polygons2masks, polygons2masks_overlap


# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
class BaseTransform:

    def __init__(self) -> None:
        pass

    def apply_image(self, labels):
        """Applies image transformation to labels."""
        pass

    def apply_instances(self, labels):
        """Applies transformations to input 'labels' and returns object instances."""
        pass

    def apply_semantic(self, labels):
        """Applies semantic segmentation to an image."""
        pass

    def __call__(self, labels):
        """Applies label transformations to an image, instances and semantic masks."""
        self.apply_image(labels)
        self.apply_instances(labels)
        self.apply_semantic(labels)


class Compose:

    def __init__(self, transforms):
        """Initializes the Compose object with a list of transforms."""
        self.transforms = transforms

    def __call__(self, data):
        """Applies a series of transformations to input data."""
        for t in self.transforms:
            data = t(data)
        return data

    def append(self, transform):
        """Appends a new transform to the existing list of transforms."""
        self.transforms.append(transform)

    def tolist(self):
        """Converts list of transforms to a standard Python list."""
        return self.transforms

    def __repr__(self):
        """Return string representation of object."""
        return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"


class BaseMixTransform:
    """This implementation is from mmyolo."""

    def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
        self.dataset = dataset
        self.pre_transform = pre_transform
        self.p = p

    def __call__(self, labels):
        """Applies pre-processing transforms and mixup/mosaic transforms to labels data."""
        if random.uniform(0, 1) > self.p:
            return labels

        # Get index of one or three other images
        indexes = self.get_indexes()
        if isinstance(indexes, int):
            indexes = [indexes]

        # Get images information will be used for Mosaic or MixUp
        mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]

        if self.pre_transform is not None:
            for i, data in enumerate(mix_labels):
                mix_labels[i] = self.pre_transform(data)
        labels['mix_labels'] = mix_labels

        # Mosaic or MixUp
        labels = self._mix_transform(labels)
        labels.pop('mix_labels', None)
        return labels

    def _mix_transform(self, labels):
        """Applies MixUp or Mosaic augmentation to the label dictionary."""
        raise NotImplementedError

    def get_indexes(self):
        """Gets a list of shuffled indexes for mosaic augmentation."""
        raise NotImplementedError


class Mosaic(BaseMixTransform):
    """
    Mosaic augmentation.

    This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
    The augmentation is applied to a dataset with a given probability.

    Attributes:
        dataset: The dataset on which the mosaic augmentation is applied.
        imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640.
        p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0.
        n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3).
    """

    def __init__(self, dataset, imgsz=640, p=1.0, n=4):
        """Initializes the object with a dataset, image size, probability, and border."""
        assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.'
        assert n in (4, 9), 'grid must be equal to 4 or 9.'
        super().__init__(dataset=dataset, p=p)
        self.dataset = dataset
        self.imgsz = imgsz
        self.border = (-imgsz // 2, -imgsz // 2)  # width, height
        self.n = n

    def get_indexes(self, buffer=True):
        """Return a list of random indexes from the dataset."""
        if buffer:  # select images from buffer
            return random.choices(list(self.dataset.buffer), k=self.n - 1)
        else:  # select any images
            return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]

    def _mix_transform(self, labels):
        """Apply mixup transformation to the input image and labels."""
        assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.'
        assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.'
        return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels)

    def _mosaic4(self, labels):
        """Create a 2x2 image mosaic."""
        mosaic_labels = []
        s = self.imgsz
        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border)  # mosaic center x, y
        for i in range(4):
            labels_patch = labels if i == 0 else labels['mix_labels'][i - 1]
            # Load image
            img = labels_patch['img']
            h, w = labels_patch.pop('resized_shape')

            # Place img in img4
            if i == 0:  # top left
                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            labels_patch = self._update_labels(labels_patch, padw, padh)
            mosaic_labels.append(labels_patch)
        final_labels = self._cat_labels(mosaic_labels)
        final_labels['img'] = img4
        return final_labels

    def _mosaic9(self, labels):
        """Create a 3x3 image mosaic."""
        mosaic_labels = []
        s = self.imgsz
        hp, wp = -1, -1  # height, width previous
        for i in range(9):
            labels_patch = labels if i == 0 else labels['mix_labels'][i - 1]
            # Load image
            img = labels_patch['img']
            h, w = labels_patch.pop('resized_shape')

            # Place img in img9
            if i == 0:  # center
                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
                h0, w0 = h, w
                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # top
                c = s, s - h, s + w, s
            elif i == 2:  # top right
                c = s + wp, s - h, s + wp + w, s
            elif i == 3:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 4:  # bottom right
                c = s + w0, s + hp, s + w0 + w, s + hp + h
            elif i == 5:  # bottom
                c = s + w0 - w, s + h0, s + w0, s + h0 + h
            elif i == 6:  # bottom left
                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
            elif i == 7:  # left
                c = s - w, s + h0 - h, s, s + h0
            elif i == 8:  # top left
                c = s - w, s + h0 - hp - h, s, s + h0 - hp

            padw, padh = c[:2]
            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords

            # Image
            img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:]  # img9[ymin:ymax, xmin:xmax]
            hp, wp = h, w  # height, width previous for next iteration

            # Labels assuming imgsz*2 mosaic size
            labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1])
            mosaic_labels.append(labels_patch)
        final_labels = self._cat_labels(mosaic_labels)

        final_labels['img'] = img9[-self.border[0]:self.border[0], -self.border[1]:self.border[1]]
        return final_labels

    @staticmethod
    def _update_labels(labels, padw, padh):
        """Update labels."""
        nh, nw = labels['img'].shape[:2]
        labels['instances'].convert_bbox(format='xyxy')
        labels['instances'].denormalize(nw, nh)
        labels['instances'].add_padding(padw, padh)
        return labels

    def _cat_labels(self, mosaic_labels):
        """Return labels with mosaic border instances clipped."""
        if len(mosaic_labels) == 0:
            return {}
        cls = []
        instances = []
        imgsz = self.imgsz * 2  # mosaic imgsz
        for labels in mosaic_labels:
            cls.append(labels['cls'])
            instances.append(labels['instances'])
        final_labels = {
            'im_file': mosaic_labels[0]['im_file'],
            'ori_shape': mosaic_labels[0]['ori_shape'],
            'resized_shape': (imgsz, imgsz),
            'cls': np.concatenate(cls, 0),
            'instances': Instances.concatenate(instances, axis=0),
            'mosaic_border': self.border}  # final_labels
        final_labels['instances'].clip(imgsz, imgsz)
        good = final_labels['instances'].remove_zero_area_boxes()
        final_labels['cls'] = final_labels['cls'][good]
        return final_labels


class MixUp(BaseMixTransform):

    def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
        super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)

    def get_indexes(self):
        """Get a random index from the dataset."""
        return random.randint(0, len(self.dataset) - 1)

    def _mix_transform(self, labels):
        """Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf."""
        r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
        labels2 = labels['mix_labels'][0]
        labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8)
        labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0)
        labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0)
        return labels


class RandomPerspective:

    def __init__(self,
                 degrees=0.0,
                 translate=0.1,
                 scale=0.5,
                 shear=0.0,
                 perspective=0.0,
                 border=(0, 0),
                 pre_transform=None):
        self.degrees = degrees
        self.translate = translate
        self.scale = scale
        self.shear = shear
        self.perspective = perspective
        # Mosaic border
        self.border = border
        self.pre_transform = pre_transform

    def affine_transform(self, img, border):
        """Center."""
        C = np.eye(3, dtype=np.float32)

        C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
        C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

        # Perspective
        P = np.eye(3, dtype=np.float32)
        P[2, 0] = random.uniform(-self.perspective, self.perspective)  # x perspective (about y)
        P[2, 1] = random.uniform(-self.perspective, self.perspective)  # y perspective (about x)

        # Rotation and Scale
        R = np.eye(3, dtype=np.float32)
        a = random.uniform(-self.degrees, self.degrees)
        # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
        s = random.uniform(1 - self.scale, 1 + self.scale)
        # s = 2 ** random.uniform(-scale, scale)
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

        # Shear
        S = np.eye(3, dtype=np.float32)
        S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # x shear (deg)
        S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # y shear (deg)

        # Translation
        T = np.eye(3, dtype=np.float32)
        T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0]  # x translation (pixels)
        T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1]  # y translation (pixels)

        # Combined rotation matrix
        M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
        # Affine image
        if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
            if self.perspective:
                img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
            else:  # affine
                img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
        return img, M, s

    def apply_bboxes(self, bboxes, M):
        """
        Apply affine to bboxes only.

        Args:
            bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4).
            M (ndarray): affine matrix.

        Returns:
            new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4].
        """
        n = len(bboxes)
        if n == 0:
            return bboxes

        xy = np.ones((n * 4, 3), dtype=bboxes.dtype)
        xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
        xy = xy @ M.T  # transform
        xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

        # Create new boxes
        x = xy[:, [0, 2, 4, 6]]
        y = xy[:, [1, 3, 5, 7]]
        return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T

    def apply_segments(self, segments, M):
        """
        Apply affine to segments and generate new bboxes from segments.

        Args:
            segments (ndarray): list of segments, [num_samples, 500, 2].
            M (ndarray): affine matrix.

        Returns:
            new_segments (ndarray): list of segments after affine, [num_samples, 500, 2].
            new_bboxes (ndarray): bboxes after affine, [N, 4].
        """
        n, num = segments.shape[:2]
        if n == 0:
            return [], segments

        xy = np.ones((n * num, 3), dtype=segments.dtype)
        segments = segments.reshape(-1, 2)
        xy[:, :2] = segments
        xy = xy @ M.T  # transform
        xy = xy[:, :2] / xy[:, 2:3]
        segments = xy.reshape(n, -1, 2)
        bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
        return bboxes, segments

    def apply_keypoints(self, keypoints, M):
        """
        Apply affine to keypoints.

        Args:
            keypoints (ndarray): keypoints, [N, 17, 3].
            M (ndarray): affine matrix.

        Returns:
            new_keypoints (ndarray): keypoints after affine, [N, 17, 3].
        """
        n, nkpt = keypoints.shape[:2]
        if n == 0:
            return keypoints
        xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype)
        visible = keypoints[..., 2].reshape(n * nkpt, 1)
        xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2)
        xy = xy @ M.T  # transform
        xy = xy[:, :2] / xy[:, 2:3]  # perspective rescale or affine
        out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1])
        visible[out_mask] = 0
        return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3)

    def __call__(self, labels):
        """
        Affine images and targets.

        Args:
            labels (dict): a dict of `bboxes`, `segments`, `keypoints`.
        """
        if self.pre_transform and 'mosaic_border' not in labels:
            labels = self.pre_transform(labels)
        labels.pop('ratio_pad', None)  # do not need ratio pad

        img = labels['img']
        cls = labels['cls']
        instances = labels.pop('instances')
        # Make sure the coord formats are right
        instances.convert_bbox(format='xyxy')
        instances.denormalize(*img.shape[:2][::-1])

        border = labels.pop('mosaic_border', self.border)
        self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2  # w, h
        # M is affine matrix
        # scale for func:`box_candidates`
        img, M, scale = self.affine_transform(img, border)

        bboxes = self.apply_bboxes(instances.bboxes, M)

        segments = instances.segments
        keypoints = instances.keypoints
        # Update bboxes if there are segments.
        if len(segments):
            bboxes, segments = self.apply_segments(segments, M)

        if keypoints is not None:
            keypoints = self.apply_keypoints(keypoints, M)
        new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False)
        # Clip
        new_instances.clip(*self.size)

        # Filter instances
        instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
        # Make the bboxes have the same scale with new_bboxes
        i = self.box_candidates(box1=instances.bboxes.T,
                                box2=new_instances.bboxes.T,
                                area_thr=0.01 if len(segments) else 0.10)
        labels['instances'] = new_instances[i]
        labels['cls'] = cls[i]
        labels['img'] = img
        labels['resized_shape'] = img.shape[:2]
        return labels

    def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
        # Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
        w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
        w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
        ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
        return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates


class RandomHSV:

    def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
        self.hgain = hgain
        self.sgain = sgain
        self.vgain = vgain

    def __call__(self, labels):
        """Applies image HSV augmentation"""
        img = labels['img']
        if self.hgain or self.sgain or self.vgain:
            r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1  # random gains
            hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
            dtype = img.dtype  # uint8

            x = np.arange(0, 256, dtype=r.dtype)
            lut_hue = ((x * r[0]) % 180).astype(dtype)
            lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
            lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

            im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
            cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed
        return labels


class RandomFlip:
    """Applies random horizontal or vertical flip to an image with a given probability."""

    def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None:
        assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}'
        assert 0 <= p <= 1.0

        self.p = p
        self.direction = direction
        self.flip_idx = flip_idx

    def __call__(self, labels):
        """Resize image and padding for detection, instance segmentation, pose."""
        img = labels['img']
        instances = labels.pop('instances')
        instances.convert_bbox(format='xywh')
        h, w = img.shape[:2]
        h = 1 if instances.normalized else h
        w = 1 if instances.normalized else w

        # Flip up-down
        if self.direction == 'vertical' and random.random() < self.p:
            img = np.flipud(img)
            instances.flipud(h)
        if self.direction == 'horizontal' and random.random() < self.p:
            img = np.fliplr(img)
            instances.fliplr(w)
            # For keypoints
            if self.flip_idx is not None and instances.keypoints is not None:
                instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :])
        labels['img'] = np.ascontiguousarray(img)
        labels['instances'] = instances
        return labels


class LetterBox:
    """Resize image and padding for detection, instance segmentation, pose."""

    def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
        """Initialize LetterBox object with specific parameters."""
        self.new_shape = new_shape
        self.auto = auto
        self.scaleFill = scaleFill
        self.scaleup = scaleup
        self.stride = stride
        self.center = center  # Put the image in the middle or top-left

    def __call__(self, labels=None, image=None):
        """Return updated labels and image with added border."""
        if labels is None:
            labels = {}
        img = labels.get('img') if image is None else image
        shape = img.shape[:2]  # current shape [height, width]
        new_shape = labels.pop('rect_shape', self.new_shape)
        if isinstance(new_shape, int):
            new_shape = (new_shape, new_shape)

        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        if not self.scaleup:  # only scale down, do not scale up (for better val mAP)
            r = min(r, 1.0)

        # Compute padding
        ratio = r, r  # width, height ratios
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
        if self.auto:  # minimum rectangle
            dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh padding
        elif self.scaleFill:  # stretch
            dw, dh = 0.0, 0.0
            new_unpad = (new_shape[1], new_shape[0])
            ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

        if self.center:
            dw /= 2  # divide padding into 2 sides
            dh /= 2
        if labels.get('ratio_pad'):
            labels['ratio_pad'] = (labels['ratio_pad'], (dw, dh))  # for evaluation

        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
                                 value=(114, 114, 114))  # add border

        if len(labels):
            labels = self._update_labels(labels, ratio, dw, dh)
            labels['img'] = img
            labels['resized_shape'] = new_shape
            return labels
        else:
            return img

    def _update_labels(self, labels, ratio, padw, padh):
        """Update labels."""
        labels['instances'].convert_bbox(format='xyxy')
        labels['instances'].denormalize(*labels['img'].shape[:2][::-1])
        labels['instances'].scale(*ratio)
        labels['instances'].add_padding(padw, padh)
        return labels


class CopyPaste:

    def __init__(self, p=0.5) -> None:
        self.p = p

    def __call__(self, labels):
        """Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)."""
        im = labels['img']
        cls = labels['cls']
        h, w = im.shape[:2]
        instances = labels.pop('instances')
        instances.convert_bbox(format='xyxy')
        instances.denormalize(w, h)
        if self.p and len(instances.segments):
            n = len(instances)
            _, w, _ = im.shape  # height, width, channels
            im_new = np.zeros(im.shape, np.uint8)

            # Calculate ioa first then select indexes randomly
            ins_flip = deepcopy(instances)
            ins_flip.fliplr(w)

            ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes)  # intersection over area, (N, M)
            indexes = np.nonzero((ioa < 0.30).all(1))[0]  # (N, )
            n = len(indexes)
            for j in random.sample(list(indexes), k=round(self.p * n)):
                cls = np.concatenate((cls, cls[[j]]), axis=0)
                instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0)
                cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)

            result = cv2.flip(im, 1)  # augment segments (flip left-right)
            i = cv2.flip(im_new, 1).astype(bool)
            im[i] = result[i]

        labels['img'] = im
        labels['cls'] = cls
        labels['instances'] = instances
        return labels


class Albumentations:
    """Albumentations transformations. Optional, uninstall package to disable.
    Applies Blur, Median Blur, convert to grayscale, Contrast Limited Adaptive Histogram Equalization,
    random change of brightness and contrast, RandomGamma and lowering of image quality by compression."""

    def __init__(self, p=1.0):
        """Initialize the transform object for YOLO bbox formatted params."""
        self.p = p
        self.transform = None
        prefix = colorstr('albumentations: ')
        try:
            import albumentations as A

            check_version(A.__version__, '1.0.3', hard=True)  # version requirement

            T = [
                A.Blur(p=0.01),
                A.MedianBlur(p=0.01),
                A.ToGray(p=0.01),
                A.CLAHE(p=0.01),
                A.RandomBrightnessContrast(p=0.0),
                A.RandomGamma(p=0.0),
                A.ImageCompression(quality_lower=75, p=0.0)]  # transforms
            self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))

            LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
        except ImportError:  # package not installed, skip
            pass
        except Exception as e:
            LOGGER.info(f'{prefix}{e}')

    def __call__(self, labels):
        """Generates object detections and returns a dictionary with detection results."""
        im = labels['img']
        cls = labels['cls']
        if len(cls):
            labels['instances'].convert_bbox('xywh')
            labels['instances'].normalize(*im.shape[:2][::-1])
            bboxes = labels['instances'].bboxes
            # TODO: add supports of segments and keypoints
            if self.transform and random.random() < self.p:
                new = self.transform(image=im, bboxes=bboxes, class_labels=cls)  # transformed
                if len(new['class_labels']) > 0:  # skip update if no bbox in new im
                    labels['img'] = new['image']
                    labels['cls'] = np.array(new['class_labels'])
                    bboxes = np.array(new['bboxes'], dtype=np.float32)
            labels['instances'].update(bboxes=bboxes)
        return labels


# TODO: technically this is not an augmentation, maybe we should put this to another files
class Format:

    def __init__(self,
                 bbox_format='xywh',
                 normalize=True,
                 return_mask=False,
                 return_keypoint=False,
                 mask_ratio=4,
                 mask_overlap=True,
                 batch_idx=True):
        self.bbox_format = bbox_format
        self.normalize = normalize
        self.return_mask = return_mask  # set False when training detection only
        self.return_keypoint = return_keypoint
        self.mask_ratio = mask_ratio
        self.mask_overlap = mask_overlap
        self.batch_idx = batch_idx  # keep the batch indexes

    def __call__(self, labels):
        """Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'."""
        img = labels.pop('img')
        h, w = img.shape[:2]
        cls = labels.pop('cls')
        instances = labels.pop('instances')
        instances.convert_bbox(format=self.bbox_format)
        instances.denormalize(w, h)
        nl = len(instances)

        if self.return_mask:
            if nl:
                masks, instances, cls = self._format_segments(instances, cls, w, h)
                masks = torch.from_numpy(masks)
            else:
                masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio,
                                    img.shape[1] // self.mask_ratio)
            labels['masks'] = masks
        if self.normalize:
            instances.normalize(w, h)
        labels['img'] = self._format_img(img)
        labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl)
        labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
        if self.return_keypoint:
            labels['keypoints'] = torch.from_numpy(instances.keypoints)
        # Then we can use collate_fn
        if self.batch_idx:
            labels['batch_idx'] = torch.zeros(nl)
        return labels

    def _format_img(self, img):
        """Format the image for YOLOv5 from Numpy array to PyTorch tensor."""
        if len(img.shape) < 3:
            img = np.expand_dims(img, -1)
        img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1])
        img = torch.from_numpy(img)
        return img

    def _format_segments(self, instances, cls, w, h):
        """convert polygon points to bitmap."""
        segments = instances.segments
        if self.mask_overlap:
            masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
            masks = masks[None]  # (640, 640) -> (1, 640, 640)
            instances = instances[sorted_idx]
            cls = cls[sorted_idx]
        else:
            masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio)

        return masks, instances, cls


def v8_transforms(dataset, imgsz, hyp, stretch=False):
    """Convert images to a size suitable for YOLOv8 training."""
    pre_transform = Compose([
        Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic),
        CopyPaste(p=hyp.copy_paste),
        RandomPerspective(
            degrees=hyp.degrees,
            translate=hyp.translate,
            scale=hyp.scale,
            shear=hyp.shear,
            perspective=hyp.perspective,
            pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
        )])
    flip_idx = dataset.data.get('flip_idx', [])  # for keypoints augmentation
    if dataset.use_keypoints:
        kpt_shape = dataset.data.get('kpt_shape', None)
        if len(flip_idx) == 0 and hyp.fliplr > 0.0:
            hyp.fliplr = 0.0
            LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
        elif flip_idx and (len(flip_idx) != kpt_shape[0]):
            raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}')

    return Compose([
        pre_transform,
        MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
        Albumentations(p=1.0),
        RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
        RandomFlip(direction='vertical', p=hyp.flipud),
        RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)])  # transforms


# Classification augmentations -----------------------------------------------------------------------------------------
def classify_transforms(size=224, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)):  # IMAGENET_MEAN, IMAGENET_STD
    # Transforms to apply if albumentations not installed
    if not isinstance(size, int):
        raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)')
    if any(mean) or any(std):
        return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(mean, std, inplace=True)])
    else:
        return T.Compose([CenterCrop(size), ToTensor()])


def hsv2colorjitter(h, s, v):
    """Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)"""
    return v, v, s, h


def classify_albumentations(
        augment=True,
        size=224,
        scale=(0.08, 1.0),
        hflip=0.5,
        vflip=0.0,
        hsv_h=0.015,  # image HSV-Hue augmentation (fraction)
        hsv_s=0.7,  # image HSV-Saturation augmentation (fraction)
        hsv_v=0.4,  # image HSV-Value augmentation (fraction)
        mean=(0.0, 0.0, 0.0),  # IMAGENET_MEAN
        std=(1.0, 1.0, 1.0),  # IMAGENET_STD
        auto_aug=False,
):
    """YOLOv8 classification Albumentations (optional, only used if package is installed)."""
    prefix = colorstr('albumentations: ')
    try:
        import albumentations as A
        from albumentations.pytorch import ToTensorV2

        check_version(A.__version__, '1.0.3', hard=True)  # version requirement
        if augment:  # Resize and crop
            T = [A.RandomResizedCrop(height=size, width=size, scale=scale)]
            if auto_aug:
                # TODO: implement AugMix, AutoAug & RandAug in albumentations
                LOGGER.info(f'{prefix}auto augmentations are currently not supported')
            else:
                if hflip > 0:
                    T += [A.HorizontalFlip(p=hflip)]
                if vflip > 0:
                    T += [A.VerticalFlip(p=vflip)]
                if any((hsv_h, hsv_s, hsv_v)):
                    T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))]  # brightness, contrast, saturation, hue
        else:  # Use fixed crop for eval set (reproducibility)
            T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
        T += [A.Normalize(mean=mean, std=std), ToTensorV2()]  # Normalize and convert to Tensor
        LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
        return A.Compose(T)

    except ImportError:  # package not installed, skip
        pass
    except Exception as e:
        LOGGER.info(f'{prefix}{e}')


class ClassifyLetterBox:
    """YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])"""

    def __init__(self, size=(640, 640), auto=False, stride=32):
        """Resizes image and crops it to center with max dimensions 'h' and 'w'."""
        super().__init__()
        self.h, self.w = (size, size) if isinstance(size, int) else size
        self.auto = auto  # pass max size integer, automatically solve for short side using stride
        self.stride = stride  # used with auto

    def __call__(self, im):  # im = np.array HWC
        imh, imw = im.shape[:2]
        r = min(self.h / imh, self.w / imw)  # ratio of new/old
        h, w = round(imh * r), round(imw * r)  # resized image
        hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
        top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
        im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
        im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
        return im_out


class CenterCrop:
    """YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])"""

    def __init__(self, size=640):
        """Converts an image from numpy array to PyTorch tensor."""
        super().__init__()
        self.h, self.w = (size, size) if isinstance(size, int) else size

    def __call__(self, im):  # im = np.array HWC
        imh, imw = im.shape[:2]
        m = min(imh, imw)  # min dimension
        top, left = (imh - m) // 2, (imw - m) // 2
        return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)


class ToTensor:
    """YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])."""

    def __init__(self, half=False):
        """Initialize YOLOv8 ToTensor object with optional half-precision support."""
        super().__init__()
        self.half = half

    def __call__(self, im):  # im = np.array HWC in BGR order
        im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1])  # HWC to CHW -> BGR to RGB -> contiguous
        im = torch.from_numpy(im)  # to torch
        im = im.half() if self.half else im.float()  # uint8 to fp16/32
        im /= 255.0  # 0-255 to 0.0-1.0
        return im