Glenn Jocher 072291bc78
ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Swamita Gupta <swamita2001@gmail.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Laughing-q <1182102784@qq.com>
2024-01-05 03:00:26 +01:00

36 lines
1.1 KiB
YAML

# Ultralytics YOLO 🚀, AGPL-3.0 license
# DOTA 1.5 dataset https://captain-whu.github.io/DOTA/index.html for object detection in aerial images by Wuhan University
# Example usage: yolo train model=yolov8n-obb.pt data=DOTAv2.yaml
# parent
# ├── ultralytics
# └── datasets
# └── dota2 ← downloads here (2GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/DOTAv1.5 # dataset root dir
train: images/train # train images (relative to 'path') 1411 images
val: images/val # val images (relative to 'path') 458 images
test: images/test # test images (optional) 937 images
# Classes for DOTA 1.5
names:
0: plane
1: ship
2: storage tank
3: baseball diamond
4: tennis court
5: basketball court
6: ground track field
7: harbor
8: bridge
9: large vehicle
10: small vehicle
11: helicopter
12: roundabout
13: soccer ball field
14: swimming pool
15: container crane
# Download script/URL (optional)
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/DOTAv1.5.zip