Glenn Jocher 072291bc78
ultralytics 8.0.235 YOLOv8 OBB train, val, predict and export (#4499)
Co-authored-by: Yash Khurana <ykhurana6@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Swamita Gupta <swamita2001@gmail.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Laughing-q <1182102784@qq.com>
2024-01-05 03:00:26 +01:00

52 lines
2.0 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
from ultralytics.engine.results import Results
from ultralytics.models.yolo.detect.predict import DetectionPredictor
from ultralytics.utils import DEFAULT_CFG, ops
class OBBPredictor(DetectionPredictor):
"""
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.yolo.obb import OBBPredictor
args = dict(model='yolov8n-obb.pt', source=ASSETS)
predictor = OBBPredictor(overrides=args)
predictor.predict_cli()
```
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
super().__init__(cfg, overrides, _callbacks)
self.args.task = 'obb'
def postprocess(self, preds, img, orig_imgs):
"""Post-processes predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
nc=len(self.model.names),
classes=self.args.classes,
rotated=True)
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i]
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape, xywh=True)
img_path = self.batch[0][i]
# xywh, r, conf, cls
obb = torch.cat([pred[:, :4], pred[:, -1:], pred[:, 4:6]], dim=-1)
results.append(Results(orig_img, path=img_path, names=self.model.names, obb=obb))
return results