Laughing 47f1cb3ef4
Fix some cuda training issues of segmentation (#46)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-11-17 18:14:02 +05:30

26 lines
946 B
Python

import torch
from ultralytics.yolo.engine.validator import BaseValidator
class ClassificationValidator(BaseValidator):
def init_metrics(self, model):
self.correct = torch.tensor([], device=next(model.parameters()).device)
def preprocess(self, batch):
batch["img"] = batch["img"].to(self.device, non_blocking=True)
batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()
batch["cls"] = batch["cls"].to(self.device)
return batch
def update_metrics(self, preds, batch):
targets = batch["cls"]
correct_in_batch = (targets[:, None] == preds).float()
self.correct = torch.cat((self.correct, correct_in_batch))
def get_stats(self):
acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy
top1, top5 = acc.mean(0).tolist()
return {"top1": top1, "top5": top5, "fitness": top5}