Muhammad Rizwan Munawar 742cbc1b4e
Add HeatMap guide in real-world-projects + Code in Solutions Directory (#6796)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2023-12-06 21:39:29 +01:00

103 lines
3.2 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
import cv2
import numpy as np
class Heatmap:
"""A class to draw heatmaps in real-time video stream based on their tracks."""
def __init__(self):
"""Initializes the heatmap class with default values for Visual, Image, track and heatmap parameters."""
# Visual Information
self.annotator = None
self.view_img = False
# Image Information
self.imw = None
self.imh = None
self.im0 = None
# Heatmap Colormap and heatmap np array
self.colormap = None
self.heatmap = None
self.heatmap_alpha = 0.5
# Predict/track information
self.boxes = None
self.track_ids = None
self.clss = None
def set_args(self, imw, imh, colormap=cv2.COLORMAP_JET, heatmap_alpha=0.5, view_img=False):
"""
Configures the heatmap colormap, width, height and display parameters.
Args:
colormap (cv2.COLORMAP): The colormap to be set.
imw (int): The width of the frame.
imh (int): The height of the frame.
heatmap_alpha (float): alpha value for heatmap display
view_img (bool): Flag indicating frame display
"""
self.imw = imw
self.imh = imh
self.colormap = colormap
self.heatmap_alpha = heatmap_alpha
self.view_img = view_img
# Heatmap new frame
self.heatmap = np.zeros((int(self.imw), int(self.imh)), dtype=np.float32)
def extract_results(self, tracks):
"""
Extracts results from the provided data.
Args:
tracks (list): List of tracks obtained from the object tracking process.
"""
if tracks[0].boxes.id is None:
return
self.boxes = tracks[0].boxes.xyxy.cpu()
self.clss = tracks[0].boxes.cls.cpu().tolist()
self.track_ids = tracks[0].boxes.id.int().cpu().tolist()
def generate_heatmap(self, im0, tracks):
"""
Generate heatmap based on tracking data.
Args:
im0 (nd array): Image
tracks (list): List of tracks obtained from the object tracking process.
"""
self.extract_results(tracks)
self.im0 = im0
for box, cls in zip(self.boxes, self.clss):
self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1
# Normalize, apply colormap to heatmap and combine with original image
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
im0_with_heatmap = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)
if self.view_img:
self.display_frames(im0_with_heatmap)
return im0_with_heatmap
def display_frames(self, im0_with_heatmap):
"""
Display heatmap.
Args:
im0_with_heatmap (nd array): Original Image with heatmap
"""
cv2.imshow('Ultralytics Heatmap', im0_with_heatmap)
if cv2.waitKey(1) & 0xFF == ord('q'):
return
if __name__ == '__main__':
Heatmap()