mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00

Co-authored-by: Yash Khurana <ykhurana6@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Swamita Gupta <swamita2001@gmail.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Laughing-q <1182102784@qq.com>
289 lines
9.8 KiB
Python
289 lines
9.8 KiB
Python
import itertools
|
|
import os
|
|
from glob import glob
|
|
from math import ceil
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
from ultralytics.data.utils import exif_size, img2label_paths
|
|
from ultralytics.utils.checks import check_requirements
|
|
|
|
check_requirements('shapely')
|
|
from shapely.geometry import Polygon
|
|
|
|
|
|
def bbox_iof(polygon1, bbox2, eps=1e-6):
|
|
"""
|
|
Calculate iofs between bbox1 and bbox2.
|
|
|
|
Args:
|
|
polygon1 (np.ndarray): Polygon coordinates, (n, 8).
|
|
bbox2 (np.ndarray): Bounding boxes, (n ,4).
|
|
"""
|
|
polygon1 = polygon1.reshape(-1, 4, 2)
|
|
lt_point = np.min(polygon1, axis=-2)
|
|
rb_point = np.max(polygon1, axis=-2)
|
|
bbox1 = np.concatenate([lt_point, rb_point], axis=-1)
|
|
|
|
lt = np.maximum(bbox1[:, None, :2], bbox2[..., :2])
|
|
rb = np.minimum(bbox1[:, None, 2:], bbox2[..., 2:])
|
|
wh = np.clip(rb - lt, 0, np.inf)
|
|
h_overlaps = wh[..., 0] * wh[..., 1]
|
|
|
|
l, t, r, b = (bbox2[..., i] for i in range(4))
|
|
polygon2 = np.stack([l, t, r, t, r, b, l, b], axis=-1).reshape(-1, 4, 2)
|
|
|
|
sg_polys1 = [Polygon(p) for p in polygon1]
|
|
sg_polys2 = [Polygon(p) for p in polygon2]
|
|
overlaps = np.zeros(h_overlaps.shape)
|
|
for p in zip(*np.nonzero(h_overlaps)):
|
|
overlaps[p] = sg_polys1[p[0]].intersection(sg_polys2[p[-1]]).area
|
|
unions = np.array([p.area for p in sg_polys1], dtype=np.float32)
|
|
unions = unions[..., None]
|
|
|
|
unions = np.clip(unions, eps, np.inf)
|
|
outputs = overlaps / unions
|
|
if outputs.ndim == 1:
|
|
outputs = outputs[..., None]
|
|
return outputs
|
|
|
|
|
|
def load_yolo_dota(data_root, split='train'):
|
|
"""Load DOTA dataset.
|
|
Args:
|
|
data_root (str): Data root.
|
|
split (str): The split data set, could be train or val.
|
|
Notes:
|
|
The directory structure assumed for the DOTA dataset:
|
|
- data_root
|
|
- images
|
|
- train
|
|
- val
|
|
- labels
|
|
- train
|
|
- val
|
|
"""
|
|
assert split in ['train', 'val']
|
|
im_dir = os.path.join(data_root, f'images/{split}')
|
|
assert Path(im_dir).exists(), f"Can't find {im_dir}, please check your data root."
|
|
im_files = glob(os.path.join(data_root, f'images/{split}/*'))
|
|
lb_files = img2label_paths(im_files)
|
|
annos = []
|
|
for im_file, lb_file in zip(im_files, lb_files):
|
|
w, h = exif_size(Image.open(im_file))
|
|
with open(lb_file) as f:
|
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
|
lb = np.array(lb, dtype=np.float32)
|
|
annos.append(dict(ori_size=(h, w), label=lb, filepath=im_file))
|
|
return annos
|
|
|
|
|
|
def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.01):
|
|
"""
|
|
Get the coordinates of windows.
|
|
|
|
Args:
|
|
im_size (tuple): Original image size, (h, w).
|
|
crop_sizes (List(int)): Crop size of windows.
|
|
gaps (List(int)): Gap between each crops.
|
|
im_rate_thr (float): Threshold of windows areas divided by image ares.
|
|
"""
|
|
h, w = im_size
|
|
windows = []
|
|
for crop_size, gap in zip(crop_sizes, gaps):
|
|
assert crop_size > gap, f'invaild crop_size gap pair [{crop_size} {gap}]'
|
|
step = crop_size - gap
|
|
|
|
xn = 1 if w <= crop_size else ceil((w - crop_size) / step + 1)
|
|
xs = [step * i for i in range(xn)]
|
|
if len(xs) > 1 and xs[-1] + crop_size > w:
|
|
xs[-1] = w - crop_size
|
|
|
|
yn = 1 if h <= crop_size else ceil((h - crop_size) / step + 1)
|
|
ys = [step * i for i in range(yn)]
|
|
if len(ys) > 1 and ys[-1] + crop_size > h:
|
|
ys[-1] = h - crop_size
|
|
|
|
start = np.array(list(itertools.product(xs, ys)), dtype=np.int64)
|
|
stop = start + crop_size
|
|
windows.append(np.concatenate([start, stop], axis=1))
|
|
windows = np.concatenate(windows, axis=0)
|
|
|
|
im_in_wins = windows.copy()
|
|
im_in_wins[:, 0::2] = np.clip(im_in_wins[:, 0::2], 0, w)
|
|
im_in_wins[:, 1::2] = np.clip(im_in_wins[:, 1::2], 0, h)
|
|
im_areas = (im_in_wins[:, 2] - im_in_wins[:, 0]) * (im_in_wins[:, 3] - im_in_wins[:, 1])
|
|
win_areas = (windows[:, 2] - windows[:, 0]) * (windows[:, 3] - windows[:, 1])
|
|
im_rates = im_areas / win_areas
|
|
if not (im_rates > im_rate_thr).any():
|
|
max_rate = im_rates.max()
|
|
im_rates[abs(im_rates - max_rate) < eps] = 1
|
|
return windows[im_rates > im_rate_thr]
|
|
|
|
|
|
def get_window_obj(anno, windows, iof_thr=0.7):
|
|
"""Get objects for each window."""
|
|
h, w = anno['ori_size']
|
|
label = anno['label']
|
|
if len(label):
|
|
label[:, 1::2] *= w
|
|
label[:, 2::2] *= h
|
|
iofs = bbox_iof(label[:, 1:], windows)
|
|
# unnormalized and misaligned coordinates
|
|
window_anns = [(label[iofs[:, i] >= iof_thr]) for i in range(len(windows))]
|
|
else:
|
|
window_anns = [np.zeros((0, 9), dtype=np.float32) for _ in range(len(windows))]
|
|
return window_anns
|
|
|
|
|
|
def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
|
|
"""Crop images and save new labels.
|
|
Args:
|
|
anno (dict): Annotation dict, including `filepath`, `label`, `ori_size` as its keys.
|
|
windows (list): A list of windows coordinates.
|
|
window_objs (list): A list of labels inside each window.
|
|
im_dir (str): The output directory path of images.
|
|
lb_dir (str): The output directory path of labels.
|
|
Notes:
|
|
The directory structure assumed for the DOTA dataset:
|
|
- data_root
|
|
- images
|
|
- train
|
|
- val
|
|
- labels
|
|
- train
|
|
- val
|
|
"""
|
|
im = cv2.imread(anno['filepath'])
|
|
name = Path(anno['filepath']).stem
|
|
for i, window in enumerate(windows):
|
|
x_start, y_start, x_stop, y_stop = window.tolist()
|
|
new_name = name + '__' + str(x_stop - x_start) + '__' + str(x_start) + '___' + str(y_start)
|
|
patch_im = im[y_start:y_stop, x_start:x_stop]
|
|
ph, pw = patch_im.shape[:2]
|
|
|
|
cv2.imwrite(os.path.join(im_dir, f'{new_name}.jpg'), patch_im)
|
|
label = window_objs[i]
|
|
if len(label) == 0:
|
|
continue
|
|
label[:, 1::2] -= x_start
|
|
label[:, 2::2] -= y_start
|
|
label[:, 1::2] /= pw
|
|
label[:, 2::2] /= ph
|
|
|
|
with open(os.path.join(lb_dir, f'{new_name}.txt'), 'w') as f:
|
|
for lb in label:
|
|
formatted_coords = ['{:.6g}'.format(coord) for coord in lb[1:]]
|
|
f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n")
|
|
|
|
|
|
def split_images_and_labels(data_root, save_dir, split='train', crop_sizes=[1024], gaps=[200]):
|
|
"""
|
|
Split both images and labels.
|
|
|
|
NOTES:
|
|
The directory structure assumed for the DOTA dataset:
|
|
- data_root
|
|
- images
|
|
- split
|
|
- labels
|
|
- split
|
|
and the output directory structure is:
|
|
- save_dir
|
|
- images
|
|
- split
|
|
- labels
|
|
- split
|
|
"""
|
|
im_dir = Path(save_dir) / 'images' / split
|
|
im_dir.mkdir(parents=True, exist_ok=True)
|
|
lb_dir = Path(save_dir) / 'labels' / split
|
|
lb_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
annos = load_yolo_dota(data_root, split=split)
|
|
for anno in tqdm(annos, total=len(annos), desc=split):
|
|
windows = get_windows(anno['ori_size'], crop_sizes, gaps)
|
|
window_objs = get_window_obj(anno, windows)
|
|
crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir))
|
|
|
|
|
|
def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
|
|
"""
|
|
Split train and val set of DOTA.
|
|
|
|
NOTES:
|
|
The directory structure assumed for the DOTA dataset:
|
|
- data_root
|
|
- images
|
|
- train
|
|
- val
|
|
- labels
|
|
- train
|
|
- val
|
|
and the output directory structure is:
|
|
- save_dir
|
|
- images
|
|
- train
|
|
- val
|
|
- labels
|
|
- train
|
|
- val
|
|
"""
|
|
crop_sizes, gaps = [], []
|
|
for r in rates:
|
|
crop_sizes.append(int(crop_size / r))
|
|
gaps.append(int(gap / r))
|
|
for split in ['train', 'val']:
|
|
split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps)
|
|
|
|
|
|
def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
|
|
"""
|
|
Split test set of DOTA, labels are not included within this set.
|
|
|
|
NOTES:
|
|
The directory structure assumed for the DOTA dataset:
|
|
- data_root
|
|
- images
|
|
- test
|
|
and the output directory structure is:
|
|
- save_dir
|
|
- images
|
|
- test
|
|
"""
|
|
crop_sizes, gaps = [], []
|
|
for r in rates:
|
|
crop_sizes.append(int(crop_size / r))
|
|
gaps.append(int(gap / r))
|
|
save_dir = Path(save_dir) / 'images' / 'test'
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
im_dir = Path(os.path.join(data_root, 'images/test'))
|
|
assert im_dir.exists(), f"Can't find {str(im_dir)}, please check your data root."
|
|
im_files = glob(str(im_dir / '*'))
|
|
for im_file in tqdm(im_files, total=len(im_files), desc='test'):
|
|
w, h = exif_size(Image.open(im_file))
|
|
windows = get_windows((h, w), crop_sizes=crop_sizes, gaps=gaps)
|
|
im = cv2.imread(im_file)
|
|
name = Path(im_file).stem
|
|
for window in windows:
|
|
x_start, y_start, x_stop, y_stop = window.tolist()
|
|
new_name = (name + '__' + str(x_stop - x_start) + '__' + str(x_start) + '___' + str(y_start))
|
|
patch_im = im[y_start:y_stop, x_start:x_stop]
|
|
cv2.imwrite(os.path.join(str(save_dir), f'{new_name}.jpg'), patch_im)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
split_trainval(
|
|
data_root='DOTAv2',
|
|
save_dir='DOTAv2-split',
|
|
)
|
|
split_test(
|
|
data_root='DOTAv2',
|
|
save_dir='DOTAv2-split',
|
|
)
|