mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-11-04 08:56:11 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			159 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Ultralytics YOLO 🚀, AGPL-3.0 license
 | 
						|
 | 
						|
import torch
 | 
						|
import torchvision
 | 
						|
 | 
						|
from ultralytics.data import ClassificationDataset, build_dataloader
 | 
						|
from ultralytics.engine.trainer import BaseTrainer
 | 
						|
from ultralytics.models import yolo
 | 
						|
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
 | 
						|
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK, colorstr
 | 
						|
from ultralytics.utils.plotting import plot_images, plot_results
 | 
						|
from ultralytics.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
 | 
						|
 | 
						|
 | 
						|
class ClassificationTrainer(BaseTrainer):
 | 
						|
    """
 | 
						|
    A class extending the BaseTrainer class for training based on a classification model.
 | 
						|
 | 
						|
    Notes:
 | 
						|
        - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
 | 
						|
 | 
						|
    Example:
 | 
						|
        ```python
 | 
						|
        from ultralytics.models.yolo.classify import ClassificationTrainer
 | 
						|
 | 
						|
        args = dict(model='yolov8n-cls.pt', data='imagenet10', epochs=3)
 | 
						|
        trainer = ClassificationTrainer(overrides=args)
 | 
						|
        trainer.train()
 | 
						|
        ```
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
 | 
						|
        """Initialize a ClassificationTrainer object with optional configuration overrides and callbacks."""
 | 
						|
        if overrides is None:
 | 
						|
            overrides = {}
 | 
						|
        overrides["task"] = "classify"
 | 
						|
        if overrides.get("imgsz") is None:
 | 
						|
            overrides["imgsz"] = 224
 | 
						|
        super().__init__(cfg, overrides, _callbacks)
 | 
						|
 | 
						|
    def set_model_attributes(self):
 | 
						|
        """Set the YOLO model's class names from the loaded dataset."""
 | 
						|
        self.model.names = self.data["names"]
 | 
						|
 | 
						|
    def get_model(self, cfg=None, weights=None, verbose=True):
 | 
						|
        """Returns a modified PyTorch model configured for training YOLO."""
 | 
						|
        model = ClassificationModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
 | 
						|
        if weights:
 | 
						|
            model.load(weights)
 | 
						|
 | 
						|
        for m in model.modules():
 | 
						|
            if not self.args.pretrained and hasattr(m, "reset_parameters"):
 | 
						|
                m.reset_parameters()
 | 
						|
            if isinstance(m, torch.nn.Dropout) and self.args.dropout:
 | 
						|
                m.p = self.args.dropout  # set dropout
 | 
						|
        for p in model.parameters():
 | 
						|
            p.requires_grad = True  # for training
 | 
						|
        return model
 | 
						|
 | 
						|
    def setup_model(self):
 | 
						|
        """Load, create or download model for any task."""
 | 
						|
        if isinstance(self.model, torch.nn.Module):  # if model is loaded beforehand. No setup needed
 | 
						|
            return
 | 
						|
 | 
						|
        model, ckpt = str(self.model), None
 | 
						|
        # Load a YOLO model locally, from torchvision, or from Ultralytics assets
 | 
						|
        if model.endswith(".pt"):
 | 
						|
            self.model, ckpt = attempt_load_one_weight(model, device="cpu")
 | 
						|
            for p in self.model.parameters():
 | 
						|
                p.requires_grad = True  # for training
 | 
						|
        elif model.split(".")[-1] in ("yaml", "yml"):
 | 
						|
            self.model = self.get_model(cfg=model)
 | 
						|
        elif model in torchvision.models.__dict__:
 | 
						|
            self.model = torchvision.models.__dict__[model](weights="IMAGENET1K_V1" if self.args.pretrained else None)
 | 
						|
        else:
 | 
						|
            raise FileNotFoundError(f"ERROR: model={model} not found locally or online. Please check model name.")
 | 
						|
        ClassificationModel.reshape_outputs(self.model, self.data["nc"])
 | 
						|
 | 
						|
        return ckpt
 | 
						|
 | 
						|
    def build_dataset(self, img_path, mode="train", batch=None):
 | 
						|
        """Creates a ClassificationDataset instance given an image path, and mode (train/test etc.)."""
 | 
						|
        return ClassificationDataset(root=img_path, args=self.args, augment=mode == "train", prefix=mode)
 | 
						|
 | 
						|
    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
 | 
						|
        """Returns PyTorch DataLoader with transforms to preprocess images for inference."""
 | 
						|
        with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
 | 
						|
            dataset = self.build_dataset(dataset_path, mode)
 | 
						|
 | 
						|
        loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank)
 | 
						|
        # Attach inference transforms
 | 
						|
        if mode != "train":
 | 
						|
            if is_parallel(self.model):
 | 
						|
                self.model.module.transforms = loader.dataset.torch_transforms
 | 
						|
            else:
 | 
						|
                self.model.transforms = loader.dataset.torch_transforms
 | 
						|
        return loader
 | 
						|
 | 
						|
    def preprocess_batch(self, batch):
 | 
						|
        """Preprocesses a batch of images and classes."""
 | 
						|
        batch["img"] = batch["img"].to(self.device)
 | 
						|
        batch["cls"] = batch["cls"].to(self.device)
 | 
						|
        return batch
 | 
						|
 | 
						|
    def progress_string(self):
 | 
						|
        """Returns a formatted string showing training progress."""
 | 
						|
        return ("\n" + "%11s" * (4 + len(self.loss_names))) % (
 | 
						|
            "Epoch",
 | 
						|
            "GPU_mem",
 | 
						|
            *self.loss_names,
 | 
						|
            "Instances",
 | 
						|
            "Size",
 | 
						|
        )
 | 
						|
 | 
						|
    def get_validator(self):
 | 
						|
        """Returns an instance of ClassificationValidator for validation."""
 | 
						|
        self.loss_names = ["loss"]
 | 
						|
        return yolo.classify.ClassificationValidator(self.test_loader, self.save_dir, _callbacks=self.callbacks)
 | 
						|
 | 
						|
    def label_loss_items(self, loss_items=None, prefix="train"):
 | 
						|
        """
 | 
						|
        Returns a loss dict with labelled training loss items tensor.
 | 
						|
 | 
						|
        Not needed for classification but necessary for segmentation & detection
 | 
						|
        """
 | 
						|
        keys = [f"{prefix}/{x}" for x in self.loss_names]
 | 
						|
        if loss_items is None:
 | 
						|
            return keys
 | 
						|
        loss_items = [round(float(loss_items), 5)]
 | 
						|
        return dict(zip(keys, loss_items))
 | 
						|
 | 
						|
    def plot_metrics(self):
 | 
						|
        """Plots metrics from a CSV file."""
 | 
						|
        plot_results(file=self.csv, classify=True, on_plot=self.on_plot)  # save results.png
 | 
						|
 | 
						|
    def final_eval(self):
 | 
						|
        """Evaluate trained model and save validation results."""
 | 
						|
        for f in self.last, self.best:
 | 
						|
            if f.exists():
 | 
						|
                strip_optimizer(f)  # strip optimizers
 | 
						|
                if f is self.best:
 | 
						|
                    LOGGER.info(f"\nValidating {f}...")
 | 
						|
                    self.validator.args.data = self.args.data
 | 
						|
                    self.validator.args.plots = self.args.plots
 | 
						|
                    self.metrics = self.validator(model=f)
 | 
						|
                    self.metrics.pop("fitness", None)
 | 
						|
                    self.run_callbacks("on_fit_epoch_end")
 | 
						|
        LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
 | 
						|
 | 
						|
    def plot_training_samples(self, batch, ni):
 | 
						|
        """Plots training samples with their annotations."""
 | 
						|
        plot_images(
 | 
						|
            images=batch["img"],
 | 
						|
            batch_idx=torch.arange(len(batch["img"])),
 | 
						|
            cls=batch["cls"].view(-1),  # warning: use .view(), not .squeeze() for Classify models
 | 
						|
            fname=self.save_dir / f"train_batch{ni}.jpg",
 | 
						|
            on_plot=self.on_plot,
 | 
						|
        )
 |