mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-11-04 08:56:11 +08:00 
			
		
		
		
	Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
		
			
				
	
	
		
			114 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Ultralytics YOLO 🚀, AGPL-3.0 license
 | 
						|
 | 
						|
import torch
 | 
						|
 | 
						|
from ultralytics.data import ClassificationDataset, build_dataloader
 | 
						|
from ultralytics.engine.validator import BaseValidator
 | 
						|
from ultralytics.utils import LOGGER
 | 
						|
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix
 | 
						|
from ultralytics.utils.plotting import plot_images
 | 
						|
 | 
						|
 | 
						|
class ClassificationValidator(BaseValidator):
 | 
						|
    """
 | 
						|
    A class extending the BaseValidator class for validation based on a classification model.
 | 
						|
 | 
						|
    Notes:
 | 
						|
        - Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
 | 
						|
 | 
						|
    Example:
 | 
						|
        ```python
 | 
						|
        from ultralytics.models.yolo.classify import ClassificationValidator
 | 
						|
 | 
						|
        args = dict(model='yolov8n-cls.pt', data='imagenet10')
 | 
						|
        validator = ClassificationValidator(args=args)
 | 
						|
        validator()
 | 
						|
        ```
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
 | 
						|
        """Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar."""
 | 
						|
        super().__init__(dataloader, save_dir, pbar, args, _callbacks)
 | 
						|
        self.targets = None
 | 
						|
        self.pred = None
 | 
						|
        self.args.task = "classify"
 | 
						|
        self.metrics = ClassifyMetrics()
 | 
						|
 | 
						|
    def get_desc(self):
 | 
						|
        """Returns a formatted string summarizing classification metrics."""
 | 
						|
        return ("%22s" + "%11s" * 2) % ("classes", "top1_acc", "top5_acc")
 | 
						|
 | 
						|
    def init_metrics(self, model):
 | 
						|
        """Initialize confusion matrix, class names, and top-1 and top-5 accuracy."""
 | 
						|
        self.names = model.names
 | 
						|
        self.nc = len(model.names)
 | 
						|
        self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task="classify")
 | 
						|
        self.pred = []
 | 
						|
        self.targets = []
 | 
						|
 | 
						|
    def preprocess(self, batch):
 | 
						|
        """Preprocesses input batch and returns it."""
 | 
						|
        batch["img"] = batch["img"].to(self.device, non_blocking=True)
 | 
						|
        batch["img"] = batch["img"].half() if self.args.half else batch["img"].float()
 | 
						|
        batch["cls"] = batch["cls"].to(self.device)
 | 
						|
        return batch
 | 
						|
 | 
						|
    def update_metrics(self, preds, batch):
 | 
						|
        """Updates running metrics with model predictions and batch targets."""
 | 
						|
        n5 = min(len(self.names), 5)
 | 
						|
        self.pred.append(preds.argsort(1, descending=True)[:, :n5])
 | 
						|
        self.targets.append(batch["cls"])
 | 
						|
 | 
						|
    def finalize_metrics(self, *args, **kwargs):
 | 
						|
        """Finalizes metrics of the model such as confusion_matrix and speed."""
 | 
						|
        self.confusion_matrix.process_cls_preds(self.pred, self.targets)
 | 
						|
        if self.args.plots:
 | 
						|
            for normalize in True, False:
 | 
						|
                self.confusion_matrix.plot(
 | 
						|
                    save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot
 | 
						|
                )
 | 
						|
        self.metrics.speed = self.speed
 | 
						|
        self.metrics.confusion_matrix = self.confusion_matrix
 | 
						|
        self.metrics.save_dir = self.save_dir
 | 
						|
 | 
						|
    def get_stats(self):
 | 
						|
        """Returns a dictionary of metrics obtained by processing targets and predictions."""
 | 
						|
        self.metrics.process(self.targets, self.pred)
 | 
						|
        return self.metrics.results_dict
 | 
						|
 | 
						|
    def build_dataset(self, img_path):
 | 
						|
        """Creates and returns a ClassificationDataset instance using given image path and preprocessing parameters."""
 | 
						|
        return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split)
 | 
						|
 | 
						|
    def get_dataloader(self, dataset_path, batch_size):
 | 
						|
        """Builds and returns a data loader for classification tasks with given parameters."""
 | 
						|
        dataset = self.build_dataset(dataset_path)
 | 
						|
        return build_dataloader(dataset, batch_size, self.args.workers, rank=-1)
 | 
						|
 | 
						|
    def print_results(self):
 | 
						|
        """Prints evaluation metrics for YOLO object detection model."""
 | 
						|
        pf = "%22s" + "%11.3g" * len(self.metrics.keys)  # print format
 | 
						|
        LOGGER.info(pf % ("all", self.metrics.top1, self.metrics.top5))
 | 
						|
 | 
						|
    def plot_val_samples(self, batch, ni):
 | 
						|
        """Plot validation image samples."""
 | 
						|
        plot_images(
 | 
						|
            images=batch["img"],
 | 
						|
            batch_idx=torch.arange(len(batch["img"])),
 | 
						|
            cls=batch["cls"].view(-1),  # warning: use .view(), not .squeeze() for Classify models
 | 
						|
            fname=self.save_dir / f"val_batch{ni}_labels.jpg",
 | 
						|
            names=self.names,
 | 
						|
            on_plot=self.on_plot,
 | 
						|
        )
 | 
						|
 | 
						|
    def plot_predictions(self, batch, preds, ni):
 | 
						|
        """Plots predicted bounding boxes on input images and saves the result."""
 | 
						|
        plot_images(
 | 
						|
            batch["img"],
 | 
						|
            batch_idx=torch.arange(len(batch["img"])),
 | 
						|
            cls=torch.argmax(preds, dim=1),
 | 
						|
            fname=self.save_dir / f"val_batch{ni}_pred.jpg",
 | 
						|
            names=self.names,
 | 
						|
            on_plot=self.on_plot,
 | 
						|
        )  # pred
 |