188 lines
8.3 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
import torch
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import LOGGER, ops
from ultralytics.utils.metrics import OBBMetrics, batch_probiou
from ultralytics.utils.plotting import output_to_rotated_target, plot_images
class OBBValidator(DetectionValidator):
"""
A class extending the DetectionValidator class for validation based on an Oriented Bounding Box (OBB) model.
Example:
```python
from ultralytics.models.yolo.obb import OBBValidator
args = dict(model='yolov8n-obb.pt', data='coco8-seg.yaml')
validator = OBBValidator(args=args)
validator(model=args['model'])
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = 'obb'
self.metrics = OBBMetrics(save_dir=self.save_dir, plot=True, on_plot=self.on_plot)
def init_metrics(self, model):
"""Initialize evaluation metrics for YOLO."""
super().init_metrics(model)
val = self.data.get(self.args.split, '') # validation path
self.is_dota = isinstance(val, str) and 'DOTA' in val # is COCO
def postprocess(self, preds):
"""Apply Non-maximum suppression to prediction outputs."""
return ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
labels=self.lb,
nc=self.nc,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
rotated=True)
def _process_batch(self, detections, gt_bboxes, gt_cls):
"""
Return correct prediction matrix.
Args:
detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
Each detection is of the format: x1, y1, x2, y2, conf, class.
labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
Each label is of the format: class, x1, y1, x2, y2.
Returns:
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
"""
iou = batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1))
return self.match_predictions(detections[:, 5], gt_cls, iou)
def _prepare_batch(self, si, batch):
idx = batch['batch_idx'] == si
cls = batch['cls'][idx].squeeze(-1)
bbox = batch['bboxes'][idx]
ori_shape = batch['ori_shape'][si]
imgsz = batch['img'].shape[2:]
ratio_pad = batch['ratio_pad'][si]
if len(cls):
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) # native-space labels
prepared_batch = dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
return prepared_batch
def _prepare_pred(self, pred, pbatch):
predn = pred.clone()
ops.scale_boxes(pbatch['imgsz'], predn[:, :4], pbatch['ori_shape'], ratio_pad=pbatch['ratio_pad'],
xywh=True) # native-space pred
return predn
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(batch['img'],
*output_to_rotated_target(preds, max_det=self.args.max_det),
paths=batch['im_file'],
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names,
on_plot=self.on_plot) # pred
def pred_to_json(self, predn, filename):
"""Serialize YOLO predictions to COCO json format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
rbox = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1)
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8)
for i, (r, b) in enumerate(zip(rbox.tolist(), poly.tolist())):
self.jdict.append({
'image_id': image_id,
'category_id': self.class_map[int(predn[i, 5].item())],
'score': round(predn[i, 4].item(), 5),
'rbox': [round(x, 3) for x in r],
'poly': [round(x, 3) for x in b]})
def eval_json(self, stats):
"""Evaluates YOLO output in JSON format and returns performance statistics."""
if self.args.save_json and self.is_dota and len(self.jdict):
import json
import re
from collections import defaultdict
pred_json = self.save_dir / 'predictions.json' # predictions
pred_txt = self.save_dir / 'predictions_txt' # predictions
pred_txt.mkdir(parents=True, exist_ok=True)
data = json.load(open(pred_json))
# Save split results
LOGGER.info(f'Saving predictions with DOTA format to {str(pred_txt)}...')
for d in data:
image_id = d['image_id']
score = d['score']
classname = self.names[d['category_id']].replace(' ', '-')
lines = '{} {} {} {} {} {} {} {} {} {}\n'.format(
image_id,
score,
d['poly'][0],
d['poly'][1],
d['poly'][2],
d['poly'][3],
d['poly'][4],
d['poly'][5],
d['poly'][6],
d['poly'][7],
)
with open(str(pred_txt / f'Task1_{classname}') + '.txt', 'a') as f:
f.writelines(lines)
# Save merged results, this could result slightly lower map than using official merging script,
# because of the probiou calculation.
pred_merged_txt = self.save_dir / 'predictions_merged_txt' # predictions
pred_merged_txt.mkdir(parents=True, exist_ok=True)
merged_results = defaultdict(list)
LOGGER.info(f'Saving merged predictions with DOTA format to {str(pred_merged_txt)}...')
for d in data:
image_id = d['image_id'].split('__')[0]
pattern = re.compile(r'\d+___\d+')
x, y = (int(c) for c in re.findall(pattern, d['image_id'])[0].split('___'))
bbox, score, cls = d['rbox'], d['score'], d['category_id']
bbox[0] += x
bbox[1] += y
bbox.extend([score, cls])
merged_results[image_id].append(bbox)
for image_id, bbox in merged_results.items():
bbox = torch.tensor(bbox)
max_wh = torch.max(bbox[:, :2]).item() * 2
c = bbox[:, 6:7] * max_wh # classes
scores = bbox[:, 5] # scores
b = bbox[:, :5].clone()
b[:, :2] += c
# 0.3 could get results close to the ones from official merging script, even slightly better.
i = ops.nms_rotated(b, scores, 0.3)
bbox = bbox[i]
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8)
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist():
classname = self.names[int(x[-1])].replace(' ', '-')
poly = [round(i, 3) for i in x[:-2]]
score = round(x[-2], 3)
lines = '{} {} {} {} {} {} {} {} {} {}\n'.format(
image_id,
score,
poly[0],
poly[1],
poly[2],
poly[3],
poly[4],
poly[5],
poly[6],
poly[7],
)
with open(str(pred_merged_txt / f'Task1_{classname}') + '.txt', 'a') as f:
f.writelines(lines)
return stats