2022-11-07 00:52:08 +01:00

67 lines
2.6 KiB
Python

import subprocess
import time
from pathlib import Path
import hydra
import torch
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import WorkingDirectory
from ultralytics.yolo.utils.loggers import colorstr
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, torch_distributed_zero_first
# BaseTrainer python usage
class ClassificationTrainer(BaseTrainer):
def get_dataset(self, dataset):
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
data = Path("datasets") / dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(Path.cwd()):
data_dir = data if data.is_dir() else (Path.cwd() / data)
if not data_dir.is_dir():
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if str(data) == 'imagenet':
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
self.console.info(s)
train_set = data_dir / "train"
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
return train_set, test_set
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
return build_classification_dataloader(path=dataset_path, batch_size=self.args.batch_size, rank=rank)
def get_validator(self):
return v8.classify.ClassificationValidator(self.test_loader, self.device, logger=self.console)
def criterion(self, preds, targets):
return torch.nn.functional.cross_entropy(preds, targets)
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.model = cfg.model or "resnet18"
cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist")
trainer = ClassificationTrainer(cfg)
trainer.train()
if __name__ == "__main__":
"""
CLI usage:
python path/to/train.py epochs=10 project=PROJECT lr0=0.1
TODO:
Direct cli support, i.e, yolov8 classify_train args.epochs 10
"""
train()