Glenn Jocher ed73c0fedc
Explorer Cleanup (#7364)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Muhammad Rizwan Munawar <chr043416@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-01-07 01:31:41 +01:00

105 lines
3.8 KiB
Python

from typing import List
import cv2
import numpy as np
from ultralytics.data.augment import LetterBox
from ultralytics.utils.ops import xyxy2xywh
from ultralytics.utils.plotting import plot_images
def get_table_schema(vector_size):
from lancedb.pydantic import LanceModel, Vector
class Schema(LanceModel):
im_file: str
labels: List[str]
cls: List[int]
bboxes: List[List[float]]
masks: List[List[List[int]]]
keypoints: List[List[List[float]]]
vector: Vector(vector_size)
return Schema
def get_sim_index_schema():
from lancedb.pydantic import LanceModel
class Schema(LanceModel):
idx: int
im_file: str
count: int
sim_im_files: List[str]
return Schema
def sanitize_batch(batch, dataset_info):
batch['cls'] = batch['cls'].flatten().int().tolist()
box_cls_pair = sorted(zip(batch['bboxes'].tolist(), batch['cls']), key=lambda x: x[1])
batch['bboxes'] = [box for box, _ in box_cls_pair]
batch['cls'] = [cls for _, cls in box_cls_pair]
batch['labels'] = [dataset_info['names'][i] for i in batch['cls']]
batch['masks'] = batch['masks'].tolist() if 'masks' in batch else [[[]]]
batch['keypoints'] = batch['keypoints'].tolist() if 'keypoints' in batch else [[[]]]
return batch
def plot_similar_images(similar_set, plot_labels=True):
"""
Plot images from the similar set.
Args:
similar_set (list): Pyarrow table containing the similar data points
plot_labels (bool): Whether to plot labels or not
"""
similar_set = similar_set.to_pydict()
empty_masks = [[[]]]
empty_boxes = [[]]
images = similar_set.get('im_file', [])
bboxes = similar_set.get('bboxes', []) if similar_set.get('bboxes') is not empty_boxes else []
masks = similar_set.get('masks') if similar_set.get('masks')[0] != empty_masks else []
kpts = similar_set.get('keypoints') if similar_set.get('keypoints')[0] != empty_masks else []
cls = similar_set.get('cls', [])
plot_size = 640
imgs, batch_idx, plot_boxes, plot_masks, plot_kpts = [], [], [], [], []
for i, imf in enumerate(images):
im = cv2.imread(imf)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
h, w = im.shape[:2]
r = min(plot_size / h, plot_size / w)
imgs.append(LetterBox(plot_size, center=False)(image=im).transpose(2, 0, 1))
if plot_labels:
if len(bboxes) > i and len(bboxes[i]) > 0:
box = np.array(bboxes[i], dtype=np.float32)
box[:, [0, 2]] *= r
box[:, [1, 3]] *= r
plot_boxes.append(box)
if len(masks) > i and len(masks[i]) > 0:
mask = np.array(masks[i], dtype=np.uint8)[0]
plot_masks.append(LetterBox(plot_size, center=False)(image=mask))
if len(kpts) > i and kpts[i] is not None:
kpt = np.array(kpts[i], dtype=np.float32)
kpt[:, :, :2] *= r
plot_kpts.append(kpt)
batch_idx.append(np.ones(len(np.array(bboxes[i], dtype=np.float32))) * i)
imgs = np.stack(imgs, axis=0)
masks = np.stack(plot_masks, axis=0) if len(plot_masks) > 0 else np.zeros(0, dtype=np.uint8)
kpts = np.concatenate(plot_kpts, axis=0) if len(plot_kpts) > 0 else np.zeros((0, 51), dtype=np.float32)
boxes = xyxy2xywh(np.concatenate(plot_boxes, axis=0)) if len(plot_boxes) > 0 else np.zeros(0, dtype=np.float32)
batch_idx = np.concatenate(batch_idx, axis=0)
cls = np.concatenate([np.array(c, dtype=np.int32) for c in cls], axis=0)
return plot_images(imgs,
batch_idx,
cls,
bboxes=boxes,
masks=masks,
kpts=kpts,
max_subplots=len(images),
save=False,
threaded=False)