mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-24 06:14:55 +08:00

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
from typing import List
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from .decoders import MaskDecoder
|
|
from .encoders import ImageEncoderViT, PromptEncoder
|
|
|
|
|
|
class Sam(nn.Module):
|
|
mask_threshold: float = 0.0
|
|
image_format: str = 'RGB'
|
|
|
|
def __init__(
|
|
self,
|
|
image_encoder: ImageEncoderViT,
|
|
prompt_encoder: PromptEncoder,
|
|
mask_decoder: MaskDecoder,
|
|
pixel_mean: List[float] = (123.675, 116.28, 103.53),
|
|
pixel_std: List[float] = (58.395, 57.12, 57.375)
|
|
) -> None:
|
|
"""
|
|
SAM predicts object masks from an image and input prompts.
|
|
|
|
Note:
|
|
All forward() operations moved to SAMPredictor.
|
|
|
|
Args:
|
|
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for
|
|
efficient mask prediction.
|
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
|
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
|
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
|
"""
|
|
super().__init__()
|
|
self.image_encoder = image_encoder
|
|
self.prompt_encoder = prompt_encoder
|
|
self.mask_decoder = mask_decoder
|
|
self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
|
self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)
|