mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
Model interface enhancement (#106)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
38d6df55cb
commit
384f0ef1c6
6
.github/workflows/ci.yaml
vendored
6
.github/workflows/ci.yaml
vendored
@ -91,14 +91,14 @@ jobs:
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=1 imgsz=64
|
||||
yolo task=detect mode=val model=runs/train/exp/weights/last.pt imgsz=64
|
||||
yolo task=detect mode=val model=runs/detect/train/weights/last.pt imgsz=64
|
||||
- name: Test segmentation # TODO: segmentation CI
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
# yolo task=segment mode=train model=yolov8n-seg.yaml data=coco128-seg.yaml epochs=1 imgsz=64
|
||||
# yolo task=segment mode=val model=runs/train/exp2/weights/last.pt data=coco128-seg.yaml imgsz=64
|
||||
# yolo task=segment mode=val model=runs/segment/train/weights/last.pt data=coco128-seg.yaml imgsz=64
|
||||
- name: Test classification # TODO: change to exp3 on Segmentation CI update
|
||||
shell: bash # for Windows compatibility
|
||||
run: |
|
||||
yolo task=classify mode=train model=resnet18 data=mnist160 epochs=1 imgsz=32
|
||||
yolo task=classify mode=val model=runs/train/exp2/weights/last.pt data=mnist160
|
||||
yolo task=classify mode=val model=runs/classify/train/weights/last.pt data=mnist160
|
||||
|
@ -1,11 +1,11 @@
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo import YOLO
|
||||
from ultralytics import YOLO
|
||||
|
||||
|
||||
def test_model_forward():
|
||||
model = YOLO()
|
||||
model.new("yolov8n-seg.yaml")
|
||||
model.new("yolov8n.yaml")
|
||||
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
|
||||
model.forward(img)
|
||||
model(img)
|
||||
@ -15,7 +15,7 @@ def test_model_info():
|
||||
model = YOLO()
|
||||
model.new("yolov8n.yaml")
|
||||
model.info()
|
||||
model.load("balloon-detect.pt")
|
||||
model.load("best.pt")
|
||||
model.info(verbose=True)
|
||||
|
||||
|
||||
@ -23,35 +23,35 @@ def test_model_fuse():
|
||||
model = YOLO()
|
||||
model.new("yolov8n.yaml")
|
||||
model.fuse()
|
||||
model.load("balloon-detect.pt")
|
||||
model.load("best.pt")
|
||||
model.fuse()
|
||||
|
||||
|
||||
def test_visualize_preds():
|
||||
model = YOLO()
|
||||
model.load("balloon-segment.pt")
|
||||
model.load("best.pt")
|
||||
model.predict(source="ultralytics/assets")
|
||||
|
||||
|
||||
def test_val():
|
||||
model = YOLO()
|
||||
model.load("balloon-segment.pt")
|
||||
model.val(data="coco128-seg.yaml", imgsz=32)
|
||||
model.load("best.pt")
|
||||
model.val(data="coco128.yaml", imgsz=32)
|
||||
|
||||
|
||||
def test_model_resume():
|
||||
model = YOLO()
|
||||
model.new("yolov8n-seg.yaml")
|
||||
model.train(epochs=1, imgsz=32, data="coco128-seg.yaml")
|
||||
model.new("yolov8n.yaml")
|
||||
model.train(epochs=1, imgsz=32, data="coco128.yaml")
|
||||
try:
|
||||
model.resume(task="segment")
|
||||
model.resume(task="detect")
|
||||
except AssertionError:
|
||||
print("Successfully caught resume assert!")
|
||||
|
||||
|
||||
def test_model_train_pretrained():
|
||||
model = YOLO()
|
||||
model.load("balloon-detect.pt")
|
||||
model.load("best.pt")
|
||||
model.train(data="coco128.yaml", epochs=1, imgsz=32)
|
||||
model.new("yolov8n.yaml")
|
||||
model.train(data="coco128.yaml", epochs=1, imgsz=32)
|
||||
|
@ -43,6 +43,7 @@ class YOLO:
|
||||
self.trainer = None
|
||||
self.task = None
|
||||
self.ckpt = None
|
||||
self.overrides = {}
|
||||
|
||||
def new(self, cfg: str):
|
||||
"""
|
||||
@ -69,6 +70,10 @@ class YOLO:
|
||||
"""
|
||||
self.ckpt = torch.load(weights, map_location="cpu")
|
||||
self.task = self.ckpt["train_args"]["task"]
|
||||
self.overrides = dict(self.ckpt["train_args"])
|
||||
self.overrides["device"] = '' # reset device
|
||||
LOGGER.info("Device has been reset to ''")
|
||||
|
||||
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = self._guess_ops_from_task(
|
||||
task=self.task)
|
||||
self.model = attempt_load_weights(weights)
|
||||
@ -107,6 +112,7 @@ class YOLO:
|
||||
source (str): Accepts all source types accepted by yolo
|
||||
**kwargs : Any other args accepted by the predictors. Too see all args check 'configuration' section in the docs
|
||||
"""
|
||||
kwargs.update(self.overrides)
|
||||
predictor = self.PredictorClass(overrides=kwargs)
|
||||
|
||||
# check size type
|
||||
@ -119,7 +125,7 @@ class YOLO:
|
||||
predictor.setup(model=self.model, source=source)
|
||||
predictor()
|
||||
|
||||
def val(self, data, **kwargs):
|
||||
def val(self, data=None, **kwargs):
|
||||
"""
|
||||
Validate a model on a given dataset
|
||||
|
||||
@ -130,8 +136,9 @@ class YOLO:
|
||||
if not self.model:
|
||||
raise Exception("model not initialized!")
|
||||
|
||||
kwargs.update(self.overrides)
|
||||
args = get_config(config=DEFAULT_CONFIG, overrides=kwargs)
|
||||
args.data = data
|
||||
args.data = data or args.data
|
||||
args.task = self.task
|
||||
|
||||
validator = self.ValidatorClass(args=args)
|
||||
|
@ -86,10 +86,15 @@ class BasePredictor:
|
||||
|
||||
# data
|
||||
if self.data:
|
||||
if self.data.endswith(".yaml"):
|
||||
self.data = check_dataset_yaml(self.data)
|
||||
else:
|
||||
self.data = check_dataset(self.data)
|
||||
try:
|
||||
if self.data.endswith(".yaml"):
|
||||
self.data = check_dataset_yaml(self.data)
|
||||
else:
|
||||
self.data = check_dataset(self.data)
|
||||
except AssertionError as e:
|
||||
LOGGER.info(f"Error ocurred: {e}")
|
||||
finally:
|
||||
LOGGER.info("Predictor will continue without reading the dataset")
|
||||
|
||||
# model
|
||||
device = select_device(self.args.device)
|
||||
|
@ -46,10 +46,15 @@ class BaseTrainer:
|
||||
self.validator = None
|
||||
self.model = None
|
||||
self.callbacks = defaultdict(list)
|
||||
self.save_dir = increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
|
||||
|
||||
# dirs
|
||||
project = overrides.get("project") or self.args.task
|
||||
name = overrides.get("name") or self.args.mode
|
||||
self.save_dir = increment_path(Path("runs") / project / name, exist_ok=self.args.exist_ok)
|
||||
self.wdir = self.save_dir / 'weights' # weights dir
|
||||
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||||
self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths
|
||||
|
||||
self.batch_size = self.args.batch_size
|
||||
self.epochs = self.args.epochs
|
||||
self.start_epoch = 0
|
||||
|
@ -6,7 +6,7 @@ from omegaconf import DictConfig, OmegaConf
|
||||
from ultralytics.yolo.utils.configs.hydra_patch import check_config_mismatch
|
||||
|
||||
|
||||
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict]):
|
||||
def get_config(config: Union[str, DictConfig], overrides: Union[str, Dict] = {}):
|
||||
"""
|
||||
Accepts yaml file name or DictConfig containing experiment configuration.
|
||||
Returns training args namespace
|
||||
|
Loading…
x
Reference in New Issue
Block a user