Update README.md

Updatation of Readme to make it an appealing look, so that visitors will engage into the project.
This commit is contained in:
Prince 2024-05-29 20:20:28 +05:30 committed by GitHub
parent cf32e2f7f0
commit b3f7ae22bc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,4 +1,4 @@
# [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458)
# [YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458) 🚀
Official PyTorch implementation of **YOLOv10**.
@ -29,7 +29,7 @@ Over the past years, YOLOs have emerged as the predominant paradigm in the field
- 2024/05/25: Add [Transformers.js demo](https://huggingface.co/spaces/Xenova/yolov10-web) and onnx weights(yolov10[n](https://huggingface.co/onnx-community/yolov10n)/[s](https://huggingface.co/onnx-community/yolov10s)/[m](https://huggingface.co/onnx-community/yolov10m)/[b](https://huggingface.co/onnx-community/yolov10b)/[l](https://huggingface.co/onnx-community/yolov10l)/[x](https://huggingface.co/onnx-community/yolov10x)). Thanks to [xenova](https://github.com/xenova)!
- 2024/05/25: Add [colab demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov10-object-detection-on-custom-dataset.ipynb#scrollTo=SaKTSzSWnG7s), [HuggingFace Demo](https://huggingface.co/spaces/kadirnar/Yolov10), and [HuggingFace Model Page](https://huggingface.co/kadirnar/Yolov10). Thanks to [SkalskiP](https://github.com/SkalskiP) and [kadirnar](https://github.com/kadirnar)!
## Performance
## Performance 📈
COCO
| Model | Test Size | #Params | FLOPs | AP<sup>val</sup> | Latency |
|:---------------|:----:|:---:|:--:|:--:|:--:|
@ -40,7 +40,7 @@ COCO
| [YOLOv10-L](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt) | 640 | 24.4M | 120.3G | 53.2% | 7.28ms |
| [YOLOv10-X](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt) | 640 | 29.5M | 160.4G | 54.4% | 10.70ms |
## Installation
## Installation 💻
`conda` virtual environment is recommended.
```
conda create -n yolov10 python=3.9
@ -48,30 +48,30 @@ conda activate yolov10
pip install -r requirements.txt
pip install -e .
```
## Demo
## Demo 🛠️
```
wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
python app.py
# Please visit http://127.0.0.1:7860
```
## Validation
## Validation ✔️
[`yolov10n.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt) [`yolov10s.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt) [`yolov10m.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt) [`yolov10b.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt) [`yolov10l.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt) [`yolov10x.pt`](https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt)
```
yolo val model=yolov10n/s/m/b/l/x.pt data=coco.yaml batch=256
```
## Training
## Training 🏋️
```
yolo detect train data=coco.yaml model=yolov10n/s/m/b/l/x.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7
```
## Prediction
## Prediction 🔍
```
yolo predict model=yolov10n/s/m/b/l/x.pt
```
## Export
## Export 📦
```
# End-to-End ONNX
yolo export model=yolov10n/s/m/b/l/x.pt format=onnx opset=13 simplify
@ -86,13 +86,13 @@ trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --
yolo predict model=yolov10n/s/m/b/l/x.engine
```
## Acknowledgement
## Acknowledgement 🙏
The code base is built with [ultralytics](https://github.com/ultralytics/ultralytics) and [RT-DETR](https://github.com/lyuwenyu/RT-DETR).
Thanks for the great implementations!
## Citation
## Citation 📜
If our code or models help your work, please cite our paper:
```BibTeX