mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 13:34:23 +08:00
ultralytics 8.0.192
improved vectorized Pose loss (#5207)
Co-authored-by: Andy <39454881+yermandy@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
525c8b0294
commit
bd8d0ce85f
2
.github/workflows/ci.yaml
vendored
2
.github/workflows/ci.yaml
vendored
@ -35,7 +35,7 @@ on:
|
|||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
HUB:
|
HUB:
|
||||||
if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule' || github.event_name == 'push' || (github.event_name == 'workflow_dispatch' && github.event.inputs.hub == 'true'))
|
if: github.repository == 'ultralytics/ultralytics' && (github.event_name == 'schedule-disabled' || github.event_name == 'push-disabled' || (github.event_name == 'workflow_dispatch' && github.event.inputs.hub == 'true'))
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
@ -22,7 +22,7 @@ repos:
|
|||||||
- id: detect-private-key
|
- id: detect-private-key
|
||||||
|
|
||||||
- repo: https://github.com/asottile/pyupgrade
|
- repo: https://github.com/asottile/pyupgrade
|
||||||
rev: v3.10.1
|
rev: v3.14.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: pyupgrade
|
- id: pyupgrade
|
||||||
name: Upgrade code
|
name: Upgrade code
|
||||||
@ -34,7 +34,7 @@ repos:
|
|||||||
name: Sort imports
|
name: Sort imports
|
||||||
|
|
||||||
- repo: https://github.com/google/yapf
|
- repo: https://github.com/google/yapf
|
||||||
rev: v0.40.0
|
rev: v0.40.2
|
||||||
hooks:
|
hooks:
|
||||||
- id: yapf
|
- id: yapf
|
||||||
name: YAPF formatting
|
name: YAPF formatting
|
||||||
@ -56,7 +56,7 @@ repos:
|
|||||||
name: PEP8
|
name: PEP8
|
||||||
|
|
||||||
- repo: https://github.com/codespell-project/codespell
|
- repo: https://github.com/codespell-project/codespell
|
||||||
rev: v2.2.5
|
rev: v2.2.6
|
||||||
hooks:
|
hooks:
|
||||||
- id: codespell
|
- id: codespell
|
||||||
args:
|
args:
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
__version__ = '8.0.191'
|
__version__ = '8.0.192'
|
||||||
|
|
||||||
from ultralytics.models import RTDETR, SAM, YOLO
|
from ultralytics.models import RTDETR, SAM, YOLO
|
||||||
from ultralytics.models.fastsam import FastSAM
|
from ultralytics.models.fastsam import FastSAM
|
||||||
|
@ -99,10 +99,10 @@ class KeypointLoss(nn.Module):
|
|||||||
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
|
def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
|
||||||
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
|
"""Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
|
||||||
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
|
d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
|
||||||
kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
|
kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9)
|
||||||
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
|
# e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
|
||||||
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
|
e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2 # from cocoeval
|
||||||
return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()
|
return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean()
|
||||||
|
|
||||||
|
|
||||||
class v8DetectionLoss:
|
class v8DetectionLoss:
|
||||||
@ -354,23 +354,13 @@ class v8PoseLoss(v8DetectionLoss):
|
|||||||
keypoints = batch['keypoints'].to(self.device).float().clone()
|
keypoints = batch['keypoints'].to(self.device).float().clone()
|
||||||
keypoints[..., 0] *= imgsz[1]
|
keypoints[..., 0] *= imgsz[1]
|
||||||
keypoints[..., 1] *= imgsz[0]
|
keypoints[..., 1] *= imgsz[0]
|
||||||
for i in range(batch_size):
|
|
||||||
if fg_mask[i].sum():
|
loss[1], loss[2] = self.calculate_keypoints_loss(fg_mask, target_gt_idx, keypoints, batch_idx,
|
||||||
idx = target_gt_idx[i][fg_mask[i]]
|
stride_tensor, target_bboxes, pred_kpts)
|
||||||
gt_kpt = keypoints[batch_idx.view(-1) == i][idx] # (n, 51)
|
|
||||||
gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
|
|
||||||
gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
|
|
||||||
area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
|
|
||||||
pred_kpt = pred_kpts[i][fg_mask[i]]
|
|
||||||
kpt_mask = gt_kpt[..., 2] != 0
|
|
||||||
loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
|
|
||||||
# kpt_score loss
|
|
||||||
if pred_kpt.shape[-1] == 3:
|
|
||||||
loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
|
|
||||||
|
|
||||||
loss[0] *= self.hyp.box # box gain
|
loss[0] *= self.hyp.box # box gain
|
||||||
loss[1] *= self.hyp.pose / batch_size # pose gain
|
loss[1] *= self.hyp.pose # pose gain
|
||||||
loss[2] *= self.hyp.kobj / batch_size # kobj gain
|
loss[2] *= self.hyp.kobj # kobj gain
|
||||||
loss[3] *= self.hyp.cls # cls gain
|
loss[3] *= self.hyp.cls # cls gain
|
||||||
loss[4] *= self.hyp.dfl # dfl gain
|
loss[4] *= self.hyp.dfl # dfl gain
|
||||||
|
|
||||||
@ -385,6 +375,70 @@ class v8PoseLoss(v8DetectionLoss):
|
|||||||
y[..., 1] += anchor_points[:, [1]] - 0.5
|
y[..., 1] += anchor_points[:, [1]] - 0.5
|
||||||
return y
|
return y
|
||||||
|
|
||||||
|
def calculate_keypoints_loss(self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes,
|
||||||
|
pred_kpts):
|
||||||
|
"""
|
||||||
|
Calculate the keypoints loss for the model.
|
||||||
|
|
||||||
|
This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is
|
||||||
|
based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is
|
||||||
|
a binary classification loss that classifies whether a keypoint is present or not.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors).
|
||||||
|
target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors).
|
||||||
|
keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim).
|
||||||
|
batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1).
|
||||||
|
stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1).
|
||||||
|
target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4).
|
||||||
|
pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(tuple): Returns a tuple containing:
|
||||||
|
- kpts_loss (torch.Tensor): The keypoints loss.
|
||||||
|
- kpts_obj_loss (torch.Tensor): The keypoints object loss.
|
||||||
|
"""
|
||||||
|
batch_idx = batch_idx.flatten()
|
||||||
|
batch_size = len(masks)
|
||||||
|
|
||||||
|
# Find the maximum number of keypoints in a single image
|
||||||
|
max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()
|
||||||
|
|
||||||
|
# Create a tensor to hold batched keypoints
|
||||||
|
batched_keypoints = torch.zeros((batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]),
|
||||||
|
device=keypoints.device)
|
||||||
|
|
||||||
|
# TODO: any idea how to vectorize this?
|
||||||
|
# Fill batched_keypoints with keypoints based on batch_idx
|
||||||
|
for i in range(batch_size):
|
||||||
|
keypoints_i = keypoints[batch_idx == i]
|
||||||
|
batched_keypoints[i, :keypoints_i.shape[0]] = keypoints_i
|
||||||
|
|
||||||
|
# Expand dimensions of target_gt_idx to match the shape of batched_keypoints
|
||||||
|
target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)
|
||||||
|
|
||||||
|
# Use target_gt_idx_expanded to select keypoints from batched_keypoints
|
||||||
|
selected_keypoints = batched_keypoints.gather(
|
||||||
|
1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2]))
|
||||||
|
|
||||||
|
# Divide coordinates by stride
|
||||||
|
selected_keypoints /= stride_tensor.view(1, -1, 1, 1)
|
||||||
|
|
||||||
|
kpts_loss = 0
|
||||||
|
kpts_obj_loss = 0
|
||||||
|
|
||||||
|
if masks.any():
|
||||||
|
gt_kpt = selected_keypoints[masks]
|
||||||
|
area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True)
|
||||||
|
pred_kpt = pred_kpts[masks]
|
||||||
|
kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True)
|
||||||
|
kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
|
||||||
|
|
||||||
|
if pred_kpt.shape[-1] == 3:
|
||||||
|
kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
|
||||||
|
|
||||||
|
return kpts_loss, kpts_obj_loss
|
||||||
|
|
||||||
|
|
||||||
class v8ClassificationLoss:
|
class v8ClassificationLoss:
|
||||||
"""Criterion class for computing training losses."""
|
"""Criterion class for computing training losses."""
|
||||||
|
Loading…
x
Reference in New Issue
Block a user