yolov10/README.md
Glenn Jocher 076d73cfaa
Create Exporter() Class (#117)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-12-30 01:28:41 +01:00

38 lines
1.2 KiB
Markdown

[![Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml)
### Install
```bash
pip install ultralytics
```
Development
```
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
```
## Usage
### 1. CLI
To simply use the latest Ultralytics YOLO models
```bash
yolo task=detect mode=train model=yolov8n.yaml args=...
classify predict yolov8n-cls.yaml args=...
segment val yolov8n-seg.yaml args=...
export yolov8n.pt format=onnx
```
### 2. Python SDK
To use pythonic interface of Ultralytics YOLO model
```python
from ultralytics import YOLO
model = YOLO.new('yolov8n.yaml') # create a new model from scratch
model = YOLO.load('yolov8n.pt') # load a pretrained model (recommended for best training results)
results = model.train(data='coco128.yaml', epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source='bus.jpg')
success = model.export(format='onnx')
```
If you're looking to modify YOLO for R&D or to build on top of it, refer to [Using Trainer]() Guide on our docs.