yolov10/docs/en/guides/object-counting.md
Glenn Jocher 80802be1e5
Docs cleanup and Google-style tracker docstrings (#6751)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-12-03 04:12:33 +01:00

63 lines
4.2 KiB
Markdown

---
comments: true
description: Object Counting Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
---
# Object Counting using Ultralytics YOLOv8 🚀
## What is Object Counting?
Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities.
## Advantages of Object Counting?
- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management.
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains.
## Real World Applications
| Logistics | Aquaculture |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Conveyor Belt Packets Counting Using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/70e2d106-510c-4c6c-a57a-d34a765aa757) | ![Fish Counting in Sea using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c60d047b-3837-435f-8d29-bb9fc95d2191) |
| Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 |
## Example
```python
from ultralytics import YOLO
from ultralytics.solutions import object_counter
import cv2
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
counter = object_counter.ObjectCounter() # Init Object Counter
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
counter.set_args(view_img=True, reg_pts=region_points,
classes_names=model.names, draw_tracks=True)
while cap.isOpened():
success, frame = cap.read()
if not success:
exit(0)
tracks = model.track(frame, persist=True, show=False)
counter.start_counting(frame, tracks)
```
???+ tip "Region is Movable"
You can move the region anywhere in the frame by clicking on its edges
### Optional Arguments `set_args`
| Name | Type | Default | Description |
|-----------------|---------|--------------------------------------------------|---------------------------------------|
| view_img | `bool` | `False` | Display the frame with counts |
| line_thickness | `int` | `2` | Increase the thickness of count value |
| reg_pts | `list` | `(20, 400), (1080, 404), (1080, 360), (20, 360)` | Region Area Points |
| classes_names | `dict` | `model.model.names` | Classes Names Dict |
| region_color | `tuple` | `(0, 255, 0)` | Region Area Color |
| track_thickness | `int` | `2` | Tracking line thickness |