mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-22 21:04:21 +08:00

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Muhammad Rizwan Munawar <chr043416@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
178 lines
6.1 KiB
Python
178 lines
6.1 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from collections import defaultdict
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from ultralytics.utils.checks import check_requirements
|
|
from ultralytics.utils.plotting import Annotator
|
|
|
|
check_requirements('shapely>=2.0.0')
|
|
|
|
from shapely.geometry import Polygon
|
|
from shapely.geometry.point import Point
|
|
|
|
|
|
class Heatmap:
|
|
"""A class to draw heatmaps in real-time video stream based on their tracks."""
|
|
|
|
def __init__(self):
|
|
"""Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters."""
|
|
|
|
# Visual Information
|
|
self.annotator = None
|
|
self.view_img = False
|
|
|
|
# Image Information
|
|
self.imw = None
|
|
self.imh = None
|
|
self.im0 = None
|
|
|
|
# Heatmap Colormap and heatmap np array
|
|
self.colormap = None
|
|
self.heatmap = None
|
|
self.heatmap_alpha = 0.5
|
|
|
|
# Predict/track information
|
|
self.boxes = None
|
|
self.track_ids = None
|
|
self.clss = None
|
|
self.track_history = None
|
|
|
|
# Counting Info
|
|
self.count_reg_pts = None
|
|
self.count_region = None
|
|
self.in_counts = 0
|
|
self.out_counts = 0
|
|
self.count_list = []
|
|
self.count_txt_thickness = 0
|
|
self.count_reg_color = (0, 255, 0)
|
|
self.region_thickness = 5
|
|
|
|
def set_args(self,
|
|
imw,
|
|
imh,
|
|
colormap=cv2.COLORMAP_JET,
|
|
heatmap_alpha=0.5,
|
|
view_img=False,
|
|
count_reg_pts=None,
|
|
count_txt_thickness=2,
|
|
count_reg_color=(255, 0, 255),
|
|
region_thickness=5):
|
|
"""
|
|
Configures the heatmap colormap, width, height and display parameters.
|
|
|
|
Args:
|
|
colormap (cv2.COLORMAP): The colormap to be set.
|
|
imw (int): The width of the frame.
|
|
imh (int): The height of the frame.
|
|
heatmap_alpha (float): alpha value for heatmap display
|
|
view_img (bool): Flag indicating frame display
|
|
count_reg_pts (list): Object counting region points
|
|
count_txt_thickness (int): Text thickness for object counting display
|
|
count_reg_color (RGB color): Color of object counting region
|
|
region_thickness (int): Object counting Region thickness
|
|
"""
|
|
self.imw = imw
|
|
self.imh = imh
|
|
self.colormap = colormap
|
|
self.heatmap_alpha = heatmap_alpha
|
|
self.view_img = view_img
|
|
|
|
self.heatmap = np.zeros((int(self.imw), int(self.imh)), dtype=np.float32) # Heatmap new frame
|
|
|
|
if count_reg_pts is not None:
|
|
self.track_history = defaultdict(list)
|
|
self.count_reg_pts = count_reg_pts
|
|
self.count_region = Polygon(self.count_reg_pts)
|
|
|
|
self.count_txt_thickness = count_txt_thickness # Counting text thickness
|
|
self.count_reg_color = count_reg_color
|
|
self.region_thickness = region_thickness
|
|
|
|
def extract_results(self, tracks):
|
|
"""
|
|
Extracts results from the provided data.
|
|
|
|
Args:
|
|
tracks (list): List of tracks obtained from the object tracking process.
|
|
"""
|
|
self.boxes = tracks[0].boxes.xyxy.cpu()
|
|
self.clss = tracks[0].boxes.cls.cpu().tolist()
|
|
self.track_ids = tracks[0].boxes.id.int().cpu().tolist()
|
|
|
|
def generate_heatmap(self, im0, tracks):
|
|
"""
|
|
Generate heatmap based on tracking data.
|
|
|
|
Args:
|
|
im0 (nd array): Image
|
|
tracks (list): List of tracks obtained from the object tracking process.
|
|
"""
|
|
self.im0 = im0
|
|
if tracks[0].boxes.id is None:
|
|
return self.im0
|
|
|
|
self.extract_results(tracks)
|
|
self.annotator = Annotator(self.im0, self.count_txt_thickness, None)
|
|
|
|
if self.count_reg_pts is not None:
|
|
# Draw counting region
|
|
self.annotator.draw_region(reg_pts=self.count_reg_pts,
|
|
color=self.count_reg_color,
|
|
thickness=self.region_thickness)
|
|
|
|
for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids):
|
|
self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1
|
|
|
|
# Store tracking hist
|
|
track_line = self.track_history[track_id]
|
|
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
|
|
if len(track_line) > 30:
|
|
track_line.pop(0)
|
|
|
|
# Count objects
|
|
if self.count_region.contains(Point(track_line[-1])):
|
|
if track_id not in self.count_list:
|
|
self.count_list.append(track_id)
|
|
if box[0] < self.count_region.centroid.x:
|
|
self.out_counts += 1
|
|
else:
|
|
self.in_counts += 1
|
|
else:
|
|
for box, cls in zip(self.boxes, self.clss):
|
|
self.heatmap[int(box[1]):int(box[3]), int(box[0]):int(box[2])] += 1
|
|
|
|
# Normalize, apply colormap to heatmap and combine with original image
|
|
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
|
|
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
|
|
|
|
if self.count_reg_pts is not None:
|
|
incount_label = 'InCount : ' + f'{self.in_counts}'
|
|
outcount_label = 'OutCount : ' + f'{self.out_counts}'
|
|
self.annotator.count_labels(in_count=incount_label, out_count=outcount_label)
|
|
|
|
im0_with_heatmap = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)
|
|
|
|
if self.view_img:
|
|
self.display_frames(im0_with_heatmap)
|
|
|
|
return im0_with_heatmap
|
|
|
|
def display_frames(self, im0_with_heatmap):
|
|
"""
|
|
Display heatmap.
|
|
|
|
Args:
|
|
im0_with_heatmap (nd array): Original Image with heatmap
|
|
"""
|
|
cv2.imshow('Ultralytics Heatmap', im0_with_heatmap)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
return
|
|
|
|
|
|
if __name__ == '__main__':
|
|
Heatmap()
|