mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-11-04 17:05:40 +08:00 
			
		
		
		
	Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Install
pip install ultralytics
Development
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
Usage
1. CLI
To simply use the latest Ultralytics YOLO models
yolo task=detect    mode=train    model=yolov8n.yaml      args=...
          classify       predict        yolov8n-cls.yaml  args=...
          segment        val            yolov8n-seg.yaml  args=...
                         export         yolov8n.pt        format=onnx
2. Python SDK
To use pythonic interface of Ultralytics YOLO model
from ultralytics import YOLO
model = YOLO("yolov8n.yaml")  # create a new model from scratch
model = YOLO(
    "yolov8n.pt"
)  # load a pretrained model (recommended for best training results)
results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source="bus.jpg")
success = model.export(format="onnx")
If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.
Description
				YOLOv10: Real-Time End-to-End Object Detection [NeurIPS 2024] 
						
						
						
					Languages
				
				
								
								
									Python
								
								99.4%
							
						
							
								
								
									Shell
								
								0.3%
							
						
							
								
								
									Dockerfile
								
								0.3%