yolov10/docs/models/index.md
Glenn Jocher 3fd317edfd
ultralytics 8.0.91 tracker fix and docs comments (#2343)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
2023-05-01 22:20:05 +02:00

35 lines
1.5 KiB
Markdown

---
comments: true
---
# Models
Ultralytics supports many models and architectures with more to come in the future. Want to add your model architecture? [Here's](../help/contributing.md) how you can contribute.
In this documentation, we provide information on four major models:
1. [YOLOv3](./yolov3.md): The third iteration of the YOLO model family, known for its efficient real-time object detection capabilities.
2. [YOLOv5](./yolov5.md): An improved version of the YOLO architecture, offering better performance and speed tradeoffs compared to previous versions.
3. [YOLOv8](./yolov8.md): The latest version of the YOLO family, featuring enhanced capabilities such as instance segmentation, pose/keypoints estimation, and classification.
4. [Segment Anything Model (SAM)](./sam.md): Meta's Segment Anything Model (SAM).
You can use these models directly in the Command Line Interface (CLI) or in a Python environment. Below are examples of how to use the models with CLI and Python:
## CLI Example
```bash
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
```
## Python Example
```python
from ultralytics import YOLO
model = YOLO("model.yaml") # build a YOLOv8n model from scratch
# YOLO("model.pt") use pre-trained model if available
model.info() # display model information
model.train(data="coco128.yaml", epochs=100) # train the model
```
For more details on each model, their supported tasks, modes, and performance, please visit their respective documentation pages linked above.