yolov10/main.py
Riza Semih Koca 4f66a8e28f batch problem
2024-10-24 20:20:49 +03:00

48 lines
1.1 KiB
Python

# import cv2
# from PIL import Image
# from ultralytics import YOLOv10
#
# # model = YOLOv10.from_pretrained('jameslahm/yolov10x')
# model = YOLOv10('model.onnx')
#
# # img1 = cv2.imread("ultralytics/assets/83.jpg")
# # img2 = cv2.imread("ultralytics/assets/101.jpg")
# # source1 = Image.open("ultralytics/assets/101.jpg")
# # source2 = Image.open("ultralytics/assets/83.jpg")
# img1 = "ultralytics/assets/83.jpg"
# img2 = "ultralytics/assets/101.jpg"
#
# results = model.predict([img1, img2], conf=0.35)
#
# for result in results:
# result.show()
#
# print(results[0].tojson())
import cv2
import numpy as np
from PIL import Image
from ultralytics import YOLOv10
# Ensure images are loaded and converted to NumPy arrays correctly
def load_image(image_path):
img = Image.open(image_path) # Load with PIL
return np.array(img) # Convert to NumPy array
# Load model
model = YOLOv10('model.onnx')
# Load images
img1 = load_image("ultralytics/assets/83.jpg")
img2 = load_image("ultralytics/assets/101.jpg")
# Predict
results = model.predict([img1, img2], conf=0.35)
# Show results
for result in results:
result.show()
print(results[0].tojson())